1
  
2
  
3
  
4
  
5
  
6
  
7
  
8
  
9
  
10
  
11
  
12
  
13
  
14
  
15
  
16
  
17
  
18
  
19
  
20
  
21
  
22
  
23
  
24
  
25
  
26
  
27
  
28
  
29
  
30
  
31
  
32
  
33
  
34
  
35
  
36
  
37
  
38
  
39
  
40
  
41
  
42
  
43
  
44
  
45
  
46
  
47
  
48
  
49
  
50
  
51
  
52
  
53
  
54
  
55
  
56
  
57
  
58
  
59
  
60
  
61
  
62
  
63
  
64
  
65
  
66
  
67
  
68
  
69
  
70
  
71
  
72
  
73
  
74
  
75
  
76
  
77
  
78
  
79
  
80
  
81
  
82
  
83
  
84
  
85
  
86
  
87
  
88
  
89
  
90
  
91
  
92
  
93
  
94
  
95
  
96
  
97
  
98
  
99
  
100
  
101
  
102
  
103
  
104
  
105
  
106
  
107
  
108
  
109
  
110
  
111
  
112
  
113
  
114
  
115
  
116
  
117
  
118
  
119
  
120
  
121
  
122
  
123
  
124
  
125
  
126
  
127
  
128
  
129
  
130
  
131
  
132
  
133
  
134
  
135
  
136
  
137
  
138
  
139
  
140
  
141
  
142
  
143
  
144
  
145
  
146
  
147
  
148
  
149
  
150
  
151
  
152
  
153
  
154
  
155
  
156
  
157
  
158
  
159
  
160
  
161
  
162
  
163
  
164
  
165
  
166
  
167
  
168
  
169
  
170
  
171
  
172
  
173
  
174
  
175
  
176
  
177
  
178
  
179
  
180
  
181
  
182
  
183
  
184
  
185
  
186
  
187
  
188
  
189
  
190
  
191
  
192
  
193
  
194
  
195
  
196
  
197
  
198
  
199
  
200
  
201
  
202
  
203
  
204
  
205
  
206
  
207
  
208
  
209
  
210
  
211
  
212
  
213
  
214
  
215
  
216
  
217
  
218
  
219
  
220
  
221
  
222
  
223
  
224
  
225
  
226
  
227
  
228
  
229
  
230
  
231
  
232
  
233
  
234
  
235
  
236
  
237
  
238
  
239
  
240
  
241
  
242
  
243
  
244
  
245
  
246
  
247
  
248
  
249
  
250
  
251
  
252
  
253
  
254
  
255
  
256
  
257
  
258
  
259
  
260
  
261
  
262
  
263
  
264
  
265
  
266
  
267
  
268
  
269
  
270
  
271
  
272
  
273
  
274
  
275
  
276
  
277
  
278
  
279
  
280
  
281
  
282
  
283
  
284
  
285
  
286
  
287
  
288
  
289
  
290
  
291
  
292
  
293
  
294
  
295
  
296
  
297
  
298
  
299
  
300
  
301
  
302
  
303
  
304
  
305
  
306
  
307
  
308
  
309
  
310
  
311
  
312
  
313
  
314
  
315
  
316
  
317
  
318
  
319
  
320
  
321
  
322
  
323
  
324
  
325
  
326
  
327
  
328
  
329
  
330
  
331
  
332
  
333
  
334
  
335
  
336
  
337
  
338
  
339
  
340
  
341
  
342
  
343
  
344
  
345
  
346
  
347
  
348
  
349
  
350
  
351
  
352
  
353
  
354
  
355
  
356
  
357
  
358
  
359
  
360
  
361
  
362
  
363
  
364
  
365
  
366
  
367
  
368
  
369
  
370
  
371
  
372
  
373
  
374
  
375
  
376
  
377
  
378
  
379
  
380
  
381
  
382
  
383
  
384
  
385
  
386
  
387
  
388
  
389
  
390
  
391
  
392
  
393
  
394
  
395
  
396
  
397
  
398
  
399
  
400
  
401
  
402
  
403
  
404
  
405
  
406
  
407
  
408
  
409
  
410
  
411
  
412
  
413
  
414
  
415
  
416
  
417
  
418
  
419
  
420
  
421
  
422
  
423
  
424
  
425
  
426
  
427
  
428
  
429
  
430
  
431
  
432
  
433
  
434
  
435
  
436
  
437
  
438
  
439
  
440
  
441
  
442
  
443
  
444
  
445
  
446
  
447
  
448
  
449
  
450
  
451
  
452
  
453
  
454
  
455
  
456
  
457
  
458
  
459
  
460
  
461
  
462
  
463
  
464
  
465
  
466
  
467
  
468
  
469
  
470
  
471
  
472
  
473
  
474
  
475
  
476
  
477
  
478
  
479
  
480
  
481
  
482
  
483
  
484
  
485
  
486
  
487
  
488
  
489
  
490
  
491
  
492
  
493
  
494
  
495
  
496
  
497
  
498
  
499
  
500
  
501
  
502
  
503
  
504
  
505
  
506
  
507
  
508
  
509
  
510
  
511
  
512
  
513
  
514
  
515
  
516
  
517
  
518
  
519
  
520
  
521
  
522
  
523
  
524
  
525
  
526
  
527
  
528
  
529
  
530
  
531
  
532
  
533
  
534
  
535
  
536
  
537
  
538
  
539
  
540
  
541
  
542
  
543
  
544
  
545
  
546
  
547
  
548
  
549
  
550
  
551
  
552
  
553
  
554
  
555
  
556
  
557
  
558
  
559
  
560
  
561
  
562
  
563
  
564
  
565
  
566
  
567
  
568
  
569
  
570
  
571
  
572
  
573
  
574
  
575
  
576
  
577
  
578
  
579
  
580
  
581
  
582
  
583
  
584
  
585
  
586
  
587
  
588
  
589
  
590
  
591
  
592
  
593
  
594
  
595
  
596
  
597
  
598
  
599
  
600
  
601
  
602
  
603
  
604
  
605
  
606
  
607
  
608
  
609
  
610
  
611
  
612
  
613
  
614
  
615
  
616
  
617
  
618
  
619
  
620
  
621
  
622
  
623
  
624
  
625
  
626
  
627
  
628
  
629
  
630
  
631
  
632
  
633
  
634
  
635
  
636
  
637
  
638
  
639
  
640
  
641
  
642
  
643
  
644
  
645
  
646
  
647
  
648
  
649
  
650
  
651
  
652
  
653
  
654
  
655
  
656
  
657
  
658
  
659
  
660
  
661
  
662
  
663
  
664
  
665
  
666
  
667
  
668
  
669
  
670
  
671
  
672
  
673
  
674
  
675
  
676
  
677
  
678
  
679
  
680
  
681
  
682
  
683
  
684
  
685
  
686
  
687
  
688
  
689
  
690
  
691
  
692
  
693
  
694
  
695
  
696
  
697
  
698
  
699
  
700
  
701
  
702
  
703
  
704
  
705
  
706
  
707
  
708
  
709
  
710
  
711
  
712
  
713
  
714
  
715
  
716
  
717
  
718
  
719
  
720
  
721
  
722
  
723
  
724
  
725
  
726
  
727
  
728
  
729
  
730
  
731
  
732
  
733
  
734
  
735
  
736
  
737
  
738
  
739
  
740
  
741
  
742
  
743
  
744
  
745
  
746
  
747
  
748
  
749
  
750
  
751
  
752
  
753
  
754
  
755
  
756
  
757
  
758
  
759
  
760
  
761
  
762
  
763
  
764
  
765
  
766
  
767
  
768
  
769
  
770
  
771
  
772
  
773
  
774
  
775
  
776
  
777
  
778
  
779
  
780
  
781
  
782
  
783
  
784
  
785
  
786
  
787
  
788
  
789
  
790
  
791
  
792
  
793
  
794
  
795
  
796
  
797
  
798
  
799
  
800
  
801
  
802
  
803
  
/* 
 * Follow the PKCS#1 standard for padding and encryption. 
 */ 
 
#pike __REAL_VERSION__ 
#pragma strict_types 
#require constant(Crypto.Hash) 
 
inherit Crypto.Sign; 
 
//! Returns the string @expr{"RSA"@}. 
string(8bit) name() { return "RSA"; } 
 
protected class LowState { 
  inherit Sign::State; 
 
  protected string _sprintf(int t) 
  { 
    return t=='O' && sprintf("%O(%d)", this_program, n->size()); 
  } 
 
  // 
  // --- Variables and accessors 
  // 
 
  protected Gmp.mpz n;  /* modulo */ 
  protected Gmp.mpz e;  /* public exponent */ 
  protected Gmp.mpz d;  /* private exponent (if known) */ 
 
  /* Extra info associated with a private key. Not currently used. */ 
 
  protected Gmp.mpz p; 
  protected Gmp.mpz q; 
 
  protected function(int(0..):string(8bit)) random = random_string; 
 
  Gmp.mpz get_n() { return n; } //! Returns the RSA modulo (n). 
  Gmp.mpz get_e() { return e; } //! Returns the RSA public exponent (e). 
 
  //! Returns the RSA private exponent (d), if known. 
  Gmp.mpz get_d() { return d; } 
 
  Gmp.mpz get_p() { return p; } //! Returns the first RSA prime (p), if known. 
  Gmp.mpz get_q() { return q; } //! Returns the second RSA prime (q), if known. 
 
  //! Sets the random function, used to generate keys and parameters, to 
  //! the function @[r]. Default is @[random_string]. 
  this_program set_random(function(int(0..):string(8bit)) r) 
  { 
    random = r; 
    return this; 
  } 
 
  //! Returns the string @expr{"RSA"@}. 
  string(8bit) name() { return "RSA"; } 
 
  //! Get the JWS algorithm identifier for a hash. 
  //! 
  //! @returns 
  //!   Returns @expr{0@} (zero) on failure. 
  //! 
  //! @seealso 
  //!   @rfc{7518:3.1@} 
  string(7bit) jwa(.Hash hash); 
 
  // 
  // --- Key methods 
  // 
 
  //! Can be initialized with a mapping with the elements n, e, d, p and 
  //! q. 
  protected void create(mapping(string(8bit):Gmp.mpz|int)|void params) 
  { 
    if(!params) return; 
    if( params->n && params->e ) 
      set_public_key(params->n, params->e); 
    if( params->d ) 
      set_private_key(params->d, ({ params->p, params->q, params->n })); 
  } 
 
  //! Sets the public key. 
  //! @param modulo 
  //!   The RSA modulo, often called n. This value needs to be >=12. 
  //! @param pub 
  //!   The public RSA exponent, often called e. 
  this_program set_public_key(Gmp.mpz|int modulo, Gmp.mpz|int pub) 
  { 
    n = Gmp.mpz(modulo); 
    e = Gmp.mpz(pub); 
    if (n->size(256) < 12) 
      error( "Too small modulo.\n" ); 
    return this; 
  } 
 
  //! Compares the public key of this RSA object with another RSA 
  //! object. 
  int(0..1) public_key_equal(this_program rsa) 
  { 
    return n == rsa->get_n() && e == rsa->get_e(); 
  } 
 
  //! Compares the keys of this RSA object with something other. 
  protected int(0..1) _equal(mixed other) 
  { 
    if (!objectp(other) || (object_program(other) != object_program(this)) || 
        !public_key_equal([object(this_program)]other)) { 
      return 0; 
    } 
    this_program rsa = [object(this_program)]other; 
    return d == rsa->get_d(); 
  } 
 
  //! Sets the private key. 
  //! @param priv 
  //!   The private RSA exponent, often called d. 
  //! @param extra 
  //!   @array 
  //!     @elem Gmp.mpz|int 0 
  //!       The first prime, often called p. 
  //!     @elem Gmp.mpz|int 1 
  //!       The second prime, often called q. 
  //!   @endarray 
  this_program set_private_key(Gmp.mpz|int priv, array(Gmp.mpz|int)|void extra) 
  { 
    d = Gmp.mpz(priv); 
    if (extra) 
    { 
      p = Gmp.mpz(extra[0]); 
      q = Gmp.mpz(extra[1]); 
      n = [object(Gmp.mpz)](p*q); 
    } 
    return this; 
  } 
 
  // 
  // --- Key generation 
  // 
 
#if constant(Nettle.rsa_generate_keypair) 
 
  this_program generate_key(int bits, void|int e) 
  { 
    // While a smaller e is possible, and more efficient, using 0x10001 
    // has become standard and is the only value supported by several 
    // TLS implementations. 
    if(!e) 
      e = 0x10001; 
    else 
    { 
      if(!(e&1)) error("e needs to be odd.\n"); 
      if(e<3) error("e is too small.\n"); 
      if(e->size()>bits) error("e has to be smaller in size than the key.\n"); 
    } 
 
    if(bits<89) error("Too small key length.\n"); 
 
    array(Gmp.mpz) key = Nettle.rsa_generate_keypair(bits, e, random); 
    if(!key) error("Error generating key.\n"); 
    [ n, d, p, q ] = key; 
    this::e = Gmp.mpz(e); 
    return this; 
  } 
 
#else 
 
  // Generate a prime with @[bits] number of bits using random function 
  // @[r]. 
  protected Gmp.mpz get_prime(int bits, function(int(0..):string(8bit)) r) 
  { 
    int len = (bits + 7) / 8; 
    int bit_to_set = 1 << ( (bits - 1) % 8); 
 
    Gmp.mpz p; 
 
    do { 
      string(8bit) s = r([int(0..)]len); 
      p = Gmp.mpz(sprintf("%c%s", (s[0] & (bit_to_set - 1)) 
                          | bit_to_set, s[1..]), 
                  256)->next_prime(); 
    } while (p->size() > bits); 
 
    return p; 
  } 
 
  //! Generate a valid RSA key pair with the size @[bits] using the 
  //! random function set with @[set_random()]. The public exponent @[e] 
  //! will be used, which defaults to 65537. Keys must be at least 89 
  //! bits. 
  this_program generate_key(int(128..) bits, void|int|Gmp.mpz e) 
  { 
    if (bits < 128) 
      error( "Ridiculously small key.\n" ); 
    if( e ) 
    { 
      if(!(e&1)) error("e needs to be odd.\n"); 
      if(e<3) error("e is too small.\n"); 
      if(e->size()>bits) error("e has to be smaller in size than the key.\n"); 
      if (e->size() >= 64) { 
        // Make the testsuite happy... 
        error("e: %O is too large.\n", e); 
      } 
    } 
 
    /* NB: When multiplying two n-bit integers, 
     *     you're most likely to get an (2n - 1)-bit result. 
     *     We therefore add an extra bit to s2. 
     * 
     * cf [bug 6620]. 
     */ 
 
    int s1 = bits / 2; /* Size of the first prime */ 
    int s2 = 1 + bits - s1; 
 
    string(8bit) msg = "A" * (bits/8-3-8); 
 
    do { 
      Gmp.mpz p; 
      Gmp.mpz q; 
      Gmp.mpz mod; 
      do { 
        p = get_prime(s1, random); 
        q = get_prime(s2, random); 
        mod = [object(Gmp.mpz)](p * q); 
      } while (mod->size() != bits); 
      Gmp.mpz phi = [object(Gmp.mpz)](Gmp.mpz([object(Gmp.mpz)](p-1))* 
                                      Gmp.mpz([object(Gmp.mpz)](q-1))); 
 
      array(Gmp.mpz) gs; /* gcd(pub, phi), and pub^-1 mod phi */ 
 
      // For a while it was thought that small exponents were a security 
      // problem, but turned out was a padding problem. The exponent 
      // 0x10001 has however become common practice, although a smaller 
      // value would be more efficient. 
      Gmp.mpz pub = Gmp.mpz(e || 0x10001); 
 
      // For security reason we need to ensure no common denominator 
      // between n and phi. We could create a different exponent, but 
      // some Crypto packages are hard coded for 0x10001, so instead 
      // we'll just start over. 
      if ((gs = pub->gcdext2(phi))[0] != 1) 
        continue; 
 
      if (gs[1] < 0) 
        gs[1] += phi; 
 
      set_public_key(mod, pub); 
      set_private_key(gs[1], ({ p, q })); 
 
    } while (!raw_verify(msg, raw_sign(msg))); 
    return this; 
  } 
 
#endif 
 
 
  // 
  // --- Block cipher compatibility. 
  // 
 
  protected int encrypt_mode; // For block cipher compatible functions 
 
  //! Sets the public key to @[key] and the mode to encryption. 
  //! @seealso 
  //!   @[set_decrypt_key], @[crypt] 
  this_program set_encrypt_key(array(Gmp.mpz) key) 
  { 
    set_public_key(key[0], key[1]); 
    encrypt_mode = 1; 
    return this; 
  } 
 
  //! Sets the public key to @[key]and the mod to decryption. 
  //! @seealso 
  //!   @[set_encrypt_key], @[crypt] 
  this_program set_decrypt_key(array(Gmp.mpz) key) 
  { 
    set_public_key(key[0], key[1]); 
    set_private_key(key[2]); 
    encrypt_mode = 0; 
    return this; 
  } 
 
  //! Returns the size of the key in terms of number of bits. 
  int(0..) key_size() { return n->size(); } 
 
  // 
  // Prototypes for functions in PKCS1_5State. 
  // 
  // These are needed to keep the type checker happy when we 
  // return this_program, and assign to variables declared as State. 
  // 
  string(8bit) encrypt(string(8bit) s, function(int:string(8bit))|void r); 
  string(8bit) decrypt(string(8bit) s); 
  string(8bit) crypt(string(8bit) s); 
  int block_size(); 
  Gmp.mpz rsa_pad(string(8bit) message, int(1..2) type, 
                  function(int(0..):string(8bit))|void random); 
  string(8bit) rsa_unpad(Gmp.mpz block, int type); 
  Gmp.mpz raw_sign(string(8bit) digest); 
  int(0..1) raw_verify(string(8bit) digest, Gmp.mpz s); 
 
  // 
  // Prototypes for switching between different signature methods. 
  // 
  this_program `PSS(); 
  this_program `OAEP(); 
  this_program `PKCS1_5(); 
} 
 
#define Sequence Standards.ASN1.Types.Sequence 
 
private class PKCS_RSA_class { 
  Sequence signature_algorithm_id(.Hash); 
  Sequence pss_signature_algorithm_id(.Hash, int(0..)|void saltlen); 
  Sequence build_public_key(global::State); 
} 
private object(PKCS_RSA_class) PKCS_RSA = 
  [object(PKCS_RSA_class)]Standards.PKCS["RSA"]; 
 
//! Implementation of RSAES-OAEP (Optimal Asymmetric Encryption Padding). 
//! 
//! @seealso 
//!   @rfc{3447:7.1@} 
class OAEPState { 
  inherit LowState; 
 
  local { 
    //! Get the OAEP encryption state. 
    this_program `OAEP() { return this_program::this; } 
 
    string(7bit) name() { return "RSAES-OEAP"; } 
 
    protected .Hash hash_alg = .SHA1; 
 
    optional .Hash get_hash_algorithm() 
    { 
      return hash_alg; 
    } 
 
    optional void set_hash_algorithm(.Hash h) 
    { 
      if ((h->digest_size() * 2 + 2) >= n->size(256)) { 
        error("Too large hash digest (%d, max: %d) for modulo.\n", 
              h->digest_size(), n->size(256)/2 - 3); 
      } 
      hash_alg = h; 
    } 
 
    //! Encrypt or decrypt depending on set mode. 
    //! @seealso 
    //!   @[set_encrypt_key], @[set_decrypt_key] 
    string(8bit) crypt(string(8bit) s, string(8bit)|void label) 
    { 
      return (encrypt_mode ? encrypt(s, UNDEFINED, label) : decrypt(s, label)); 
    } 
 
    //! Returns the crypto block size, in bytes, or zero if not yet set. 
    int block_size() 
    { 
      // FIXME: This can be both zero and negative... 
      return n->size(256) - 2*(hash_alg->digest_size() + 1); 
    } 
 
    string(8bit) encrypt(string(8bit) s, 
                         function(int(0..):string(8bit))|void r, 
                         string(8bit)|void label) 
    { 
      if (!r) r = random; 
      string(8bit) em = 
        hash_alg->eme_oaep_encode(s, n->size(256), 
                                  r(hash_alg->digest_size()), 
                                  label); 
      if (!em) error("Message too long.\n"); 
      return [string(8bit)]sprintf("%*c", 
                                   n->size(256), Gmp.mpz(em, 256)->powm(e, n)); 
    } 
 
    string(8bit) decrypt(string(8bit) s, string(8bit)|void label) 
    { 
      if (sizeof(s) != n->size(256)) { 
        error("Decryption error.\n"); 
      } 
      Gmp.mpz c = Gmp.mpz(s, 256); 
      if (c >= n) { 
        error("Decryption error.\n"); 
      } 
      string(8bit) m = 
        hash_alg->eme_oaep_decode([string(8bit)] 
                                  sprintf("%*c", n->size(256), c->powm(d, n)), 
                                  label); 
      if (!m) { 
        error("Decryption error.\n"); 
      } 
      return m; 
    } 
  } 
} 
 
//! RSA PSS signatures (@rfc{3447:8.1@}). 
//! 
//! @seealso 
//!   @[PKCS1_5State] 
class PSSState { 
  inherit OAEPState; 
 
  local { 
    //! Get the PSS signature state. 
    this_program `PSS() { return this_program::this; } 
 
    protected int(0..) default_salt_size = 20; 
 
    //! Calls @[Standards.PKCS.RSA.pss_signature_algorithm_id] with the 
    //! provided @[hash] and @[saltlen]. 
    //! 
    //! @param hash 
    //!   Hash algorithm for the signature. 
    //! 
    //! @param saltlen 
    //!   Length of the salt for the signature. Defaults to the 
    //!   value returned by @[salt_size()]. 
    Sequence pkcs_signature_algorithm_id(.Hash hash, int(0..)|void saltlen) 
    { 
      if (undefinedp(saltlen)) saltlen = default_salt_size; 
      return PKCS_RSA->pss_signature_algorithm_id(hash, saltlen); 
    } 
 
    string(7bit) name() { return "RSASSA-PSS"; } 
 
    //! Get the JWS algorithm identifier for a hash. 
    //! 
    //! @returns 
    //!   Returns @expr{0@} (zero) on failure. 
    //! 
    //! @seealso 
    //!   @rfc{7518:3.1@} 
    string(7bit) jwa(.Hash hash) 
    { 
      switch(hash->name()) { 
      case "sha256": 
        return "PS256"; 
      case "sha384": 
        return "PS384"; 
      case "sha512": 
        return "PS512"; 
      } 
      return 0; 
    } 
 
    optional int(0..) salt_size() { return default_salt_size; } 
 
    optional void set_salt_size(int(0..) salt_size) 
    { 
      default_salt_size = salt_size; 
    } 
 
    protected int(0..1) _equal(mixed x) 
    { 
      return objectp(x) && (object_program(x) == this_program) && 
        (salt_size == ([object(this_program)]x)->salt_size) && 
        ::_equal(x); 
    } 
 
    //! Signs the @[message] with a RSASSA-PSS signature using hash 
    //! algorithm @[h]. 
    //! 
    //! @param message 
    //!   Message to sign. 
    //! 
    //! @param h 
    //!   Hash algorithm to use. 
    //! 
    //! @param salt 
    //!   Either of 
    //!   @mixed 
    //!     @type int(0..) 
    //!       Use a @[random] salt of this length for the signature. 
    //!     @type zero|void 
    //!       Use a @[random] salt of length @[salt_size()]. 
    //!     @type string(8bit) 
    //!       Use this specific salt. 
    //!   @endmixed 
    //! 
    //! @returns 
    //!   Returns the signature on success, and @expr{0@} (zero) 
    //!   on failure (typically that the hash + salt combo is too 
    //!   large for the RSA modulo). 
    //! 
    //! @seealso 
    //!   @[pkcs_verify()], @[salt_size()], @rfc{3447:8.1.1@} 
    string(8bit) pkcs_sign(string(8bit) message, .Hash h, 
                           string(8bit)|int(0..)|void salt) 
    { 
      if (undefinedp(salt)) salt = default_salt_size; 
 
      //    1. EMSA-PSS encoding: Apply the EMSA-PSS encoding operation 
      //       (Section 9.1.1) to the message M to produce an encoded 
      //       message EM of length \ceil ((modBits - 1)/8) octets such 
      //       that the bit length of the integer OS2IP (EM) (see 
      //       Section 4.2) is at most modBits - 1, where modBits is 
      //       the length in bits of the RSA modulus n: 
      // 
      //       EM = EMSA-PSS-ENCODE (M, modBits - 1). 
      // 
      //       Note that the octet length of EM will be one less than 
      //       k if modBits - 1 is divisible by 8 and equal to k 
      //       otherwise. If the encoding operation outputs "message 
      //       too long," output "message too long" and stop. If the 
      //       encoding operation outputs "encoding error," output 
      //       "encoding error" and stop. 
      if (intp(salt)) { 
        salt = random([int(0..)]salt); 
      } 
      string(8bit) em = 
        h->emsa_pss_encode(message, [int(1..)](n->size()-1), 
                           [string(8bit)]salt); 
 
      // RSA signature: 
      //   a. Convert the encoded message EM to an integer message 
      //      representative m (see Section 4.2): 
      // 
      //      m = OS2IP (EM). 
      Gmp.mpz m = Gmp.smpz(em, 256); 
 
      //   b. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA 
      //      private key K and the message representative m to produce an 
      //      integer signature representative s: 
      // 
      //      s = RSASP1 (K, m). 
      Gmp.mpz s = m->powm(d, n); 
 
      //   c. Convert the signature representative s to a signature S of 
      //      length k octets (see Section 4.1): 
      // 
      //      S = I2OSP (s, k). 
      // 
      // Output the signature S. 
      return [string(8bit)]sprintf("%*c", n->size(256), s); 
    } 
 
    //! Verify RSASSA-PSS signature @[sign] of message @[message] using hash 
    //! algorithm @[h]. 
    //! 
    //! @seealso 
    //!   @rfc{3447:8.1.2@} 
    int(0..1) pkcs_verify(string(8bit) message, .Hash h, string(8bit) sign, 
                          int(0..)|void saltlen) 
    { 
      if (undefinedp(saltlen)) saltlen = default_salt_size; 
 
      // 1. Length checking: If the length of the signature S is not k 
      //    octets, output "invalid signature" and stop. 
      if (sizeof(sign) != n->size(256)) { 
        werror("Bad size\n"); 
        return 0; 
      } 
 
      // 2. RSA verification: 
      //    a. Convert the signature S to an integer signature representative 
      //       s (see Section 4.2): 
      // 
      //       s = OS2IP (S). 
      Gmp.mpz s = Gmp.smpz(sign, 256); 
 
      //    b. Apply the RSAVP1 verification primitive (Section 5.2.2) to the 
      //       RSA public key (n, e) and the signature representative s to 
      //       produce an integer message representative m: 
      // 
      //       m = RSAVP1 ((n, e), s). 
      Gmp.mpz m = s->powm(e, n); 
 
      //       If RSAVP1 output "signature representative out of range," output 
      //       "invalid signature" and stop. 
      if (m >= n) { 
        werror("Out of range\n"); 
        return 0; 
      } 
 
      //    c. Convert the message representative m to an encoded message EM 
      //       of length emLen = \ceil ((modBits - 1)/8) octets, where modBits 
      //       is the length in bits of the RSA modulus n (see Section 4.1): 
      // 
      //       EM = I2OSP (m, emLen). 
      string(8bit) em = 
        [string(8bit)]sprintf("%*c", [int(0..)]((n->size()+6)/8), m); 
 
      //       Note that emLen will be one less than k if modBits - 1 is 
      //       divisible by 8 and equal to k otherwise. If I2OSP outputs 
      //       "integer too large," output "invalid signature" and stop. 
      /* FIXME: Is this needed? */ 
 
      // 3. EMSA-PSS verification: Apply the EMSA-PSS verification operation 
      //    (Section 9.1.2) to the message M and the encoded message EM to 
      //    determine whether they are consistent: 
      // 
      //    Result = EMSA-PSS-VERIFY (M, EM, modBits - 1). 
      // 
      // 4. If Result = "consistent," output "valid signature." Otherwise, 
      //    output "invalid signature." 
      return h->emsa_pss_verify(message, em, 
                                [int(1..)](n->size() - 1), saltlen); 
    } 
  } 
} 
 
//! PKCS#1 1.5 encryption (@rfc{3447:7.2@}) and signatures (@rfc{3447:8.2@}). 
//! 
//! @seealso 
//!    @[PSSState] 
class PKCS1_5State 
{ 
  inherit PSSState; 
 
  //! Get the PKCS#1 1.5 state. 
  this_program `PKCS1_5() { return this_program::this; } 
 
  //! Calls @[Standards.PKCS.RSA.signature_algorithm_id] with the 
  //! provided @[hash]. 
  Sequence pkcs_signature_algorithm_id(.Hash hash) 
  { 
    return PKCS_RSA->signature_algorithm_id(hash); 
  } 
 
  //! Calls @[Standards.PKCS.RSA.build_public_key] with this object as 
  //! argument. 
  Sequence pkcs_public_key() 
  { 
    return PKCS_RSA->build_public_key(this); 
  } 
 
#undef Sequence 
 
  //! Returns the string @expr{"RSA"@}. 
  string(8bit) name() { return "RSA"; } 
 
  //! Get the JWS algorithm identifier for a hash. 
  //! 
  //! @returns 
  //!   Returns @expr{0@} (zero) on failure. 
  //! 
  //! @seealso 
  //!   @rfc{7518:3.1@} 
  string(7bit) jwa(.Hash hash) 
  { 
    switch(hash->name()) { 
    case "sha256": 
      return "RS256"; 
    case "sha384": 
      return "RS384"; 
    case "sha512": 
      return "RS512"; 
    } 
    return 0; 
  } 
 
  //! Signs the @[message] with a PKCS-1 signature using hash 
  //! algorithm @[h]. This is equivalent to 
  //! I2OSP(RSASP1(OS2IP(RSAES-PKCS1-V1_5-ENCODE(message)))) in PKCS#1 
  //! v2.2. 
  string(8bit) pkcs_sign(string(8bit) message, .Hash h) 
  { 
    string(8bit) di = Standards.PKCS.Signature.build_digestinfo(message, h); 
    return [string(8bit)]sprintf("%*c", n->size(256), raw_sign(di)); 
  } 
 
  //! Verify PKCS-1 signature @[sign] of message @[message] using hash 
  //! algorithm @[h]. 
  int(0..1) pkcs_verify(string(8bit) message, .Hash h, string(8bit) sign) 
  { 
    if( sizeof(sign)!=n->size(256) ) return 0; 
    string(8bit) s = Standards.PKCS.Signature.build_digestinfo(message, h); 
    return raw_verify(s, Gmp.mpz(sign, 256)); 
  } 
 
  // 
  // --- Encryption/decryption 
  // 
 
  //! Pads the message @[s] with @[rsa_pad] type 2, signs it and returns 
  //! the signature as a byte string. 
  //! @param r 
  //!   Optional random function to be passed down to @[rsa_pad]. 
  string(8bit) encrypt(string(8bit) s, function(int:string(8bit))|void r) 
  { 
    return rsa_pad(s, 2, r)->powm(e, n)->digits(256); 
  } 
 
  //! Decrypt a message encrypted with @[encrypt]. 
  string(8bit) decrypt(string(8bit) s) 
  { 
    return rsa_unpad(Gmp.smpz(s, 256)->powm(d, n), 2); 
  } 
 
  // 
  // --- Block cipher compatibility. 
  // 
 
  //! Encrypt or decrypt depending on set mode. 
  //! @seealso 
  //!   @[set_encrypt_key], @[set_decrypt_key] 
  string(8bit) crypt(string(8bit) s) 
  { 
    return (encrypt_mode ? encrypt(s) : decrypt(s)); 
  } 
 
  //! Returns the crypto block size, in bytes, or zero if not yet set. 
  int block_size() 
  { 
    // FIXME: This can be both zero and negative... 
    return n->size(256) - 3; 
  } 
 
  // 
  //  --- Below are methods for RSA applied in other standards. 
  // 
 
 
  //! Pads the @[message] to the current block size with method 
  //! @[type] and returns the result as an integer. This is equivalent 
  //! to OS2IP(RSAES-PKCS1-V1_5-ENCODE(message)) in PKCS#1 v2.2. 
  //! @param type 
  //!   @int 
  //!     @value 1 
  //!       The message is padded with @expr{0xff@} bytes. 
  //!     @value 2 
  //!       The message is padded with random data, using the @[random] 
  //!       function if provided. Otherwise the default random function 
  //!       set in the object will be used. 
  //!   @endint 
  Gmp.mpz rsa_pad(string(8bit) message, int(1..2) type, 
                  function(int(0..):string(8bit))|void random) 
  { 
    string(8bit) padding = ""; 
 
    // Padding length: RSA size - message size - 3 bytes; delimiter, 
    // padding type and leading null (not explicitly coded, as Gmp.mpz 
    // does the right thing anyway). Require at least 8 bytes of padding 
    // as security margin. 
    int len = n->size(256) - 3 - sizeof(message); 
    if (len < 8) 
      error( "Block too large. (%d>%d)\n", sizeof(message), n->size(256)-11 ); 
 
    switch(type) 
    { 
    case 1: 
      padding = sprintf("%@c", allocate(len, 0xff)); 
      break; 
    case 2: 
      if( !random ) random = this::random; 
      do { 
        padding += random([int(0..)](len-sizeof(padding))) - "\0"; 
      }  while( sizeof(padding)<len ); 
      break; 
    default: 
      error( "Unknown type.\n" ); 
    } 
    return Gmp.smpz(sprintf("%c", type) + padding + "\0" + message, 256); 
  } 
 
  //! Reverse the effect of @[rsa_pad]. 
  string(8bit) rsa_unpad(Gmp.mpz block, int type) 
  { 
    string(8bit) s = block->digits(256); 
 
    // Content independent size information. Not timing sensitive. 
    if( sizeof(s)!=(n->size(256)-1) ) return 0; 
 
    int i = Nettle.rsa_unpad(s, type); 
    if( !i ) return 0; 
 
    return s[i..]; 
  } 
 
  //! Pads the @[digest] with @[rsa_pad] type 1 and signs it. This is 
  //! equivalent to RSASP1(OS2IP(RSAES-PKCS1-V1_5-ENCODE(message))) in 
  //! PKCS#1 v2.2. 
  Gmp.mpz raw_sign(string(8bit) digest) 
  { 
    return rsa_pad(digest, 1, 0)->powm(d, n); 
  } 
 
  //! Verifies the @[digest] against the signature @[s], assuming pad 
  //! type 1. 
  //! @seealso 
  //!   @[rsa_pad], @[raw_sign] 
  int(0..1) raw_verify(string(8bit) digest, Gmp.mpz s) 
  { 
    return Gmp.smpz(s)->powm(e, n) == rsa_pad(digest, 1, 0); 
  } 
} 
 
//! 
class State 
{ 
  inherit PKCS1_5State; 
} 
 
//! Calling `() will return a @[State] object. 
protected State `()(mapping(string(8bit):Gmp.mpz|int)|void params) 
{ 
  return State(params); 
}