a580e1 | #pike __REAL_VERSION__ | |||
a20af6 | ||||
38b412 | //! This class contains a geographical position, //! ie a point on the earths surface. The resulting //! position object implements comparision methods //! (__hash, `==, `< and `>) so that you can compare //! and sort positions as well as using them as index //! in mappings. Comparision is made primary on latidue | |||
09f759 | //! and secondly on longitude. It does not currently //! take the ellipsoid into account. //! //! It is possible to cast a position into an array, which //! will yield ({ float latitude, float longitude }), as //! well as into a string. | |||
c36e80 | ||||
38b412 | //! Latitude (N--S) of the position, in degrees. //! Positive number is north, negative number is south. float lat; | |||
c36e80 | ||||
38b412 | //! Longitude (W--E) of the position, in degrees. | |||
dd02db | //! Positive number is east, negative number is west. | |||
38b412 | float long; | |||
c36e80 | ||||
dd02db | //! Altitud of the position, in meters. Positive numbers //! is up. Zero is the shell of the current ellipsoid. float alt; //! @decl void create(float lat, float long, void|float alt) | |||
38b412 | //! @decl void create(string lat, string long) //! @decl void create(string both) //! | |||
d75233 | //! Constructor for this class. If fed with strings, | |||
38b412 | //! it will perform a dwim scan on the strings. If they //! fails to be understood, there will be an exception. //! | |||
f4ea21 | void create(void|int|float|string _lat, void|int|float|string _long, void|float _alt) | |||
c36e80 | { | |||
769230 | if(undefinedp(_lat)) return; | |||
c36e80 | if (stringp(_lat)) { | |||
769230 | if (undefinedp(_long)) | |||
c36e80 | { string tmp; | |||
82425e | if (sscanf(_lat,"%sN %s",tmp,_long)==2) _lat=tmp+"N"; else if (sscanf(_lat,"%sS %s",tmp,_long)==2) _lat=tmp+"S"; else if (sscanf(_lat,"%sW %s",tmp,_lat)==2) _long=tmp+"W"; else if (sscanf(_lat,"%sE %s",tmp,_lat)==2) _long=tmp+"N"; else if (sscanf(_lat,"%s %s",tmp,_long)==2) _lat=tmp; | |||
c36e80 | } _lat=dwim(_lat,"NS"); if (stringp(_lat)) error("Failed to understand latitude %O\n",lat); } if (stringp(_long)) { _long=dwim(_long,"EW"); if (stringp(_long)) error("Failed to understand longitude %O\n",long); } lat=(float)_lat; long=(float)_long; | |||
dd02db | alt=(float)_alt; | |||
09f759 | set_ellipsoid("WGS 84"); | |||
c36e80 | } | |||
09f759 | private float|string dwim(string what,string direction) | |||
c36e80 | { float d,m,s; string dir=0; int neg=0; | |||
09f759 | #define DIV "%*[ \t\r\n'`°\":.]" | |||
c36e80 | if (sscanf(what,"-%s",what)) neg=1; what=upper_case(what); sscanf(what,"%f"DIV"%f"DIV"%f"DIV"%["+direction+"]",d,m,s,dir)==7 || sscanf(what,"%f"DIV"%f"DIV "%["+direction+"]",d,m, dir)==5 || sscanf(what,"%f"DIV "%["+direction+"]",d, dir); if (dir==direction[1..1]) neg=!neg; d+=m/60+s/3600; return neg?-d:d; } string prettyprint(float what,int n,string directions) { if (what<0) what=-what,directions=directions[1..]; else directions=directions[..0]; switch (n) { case -1: return sprintf("%.5g",what); case 1: | |||
47bd50 | return sprintf("%.3f°%s",what,directions); | |||
c36e80 | case 3: | |||
47bd50 | return sprintf("%d°%d'%.1f\"%s", | |||
c36e80 | (int)floor(what),(int)floor(60*(what-floor(what))), 3600*(what-floor(60*what)/60), directions); default: | |||
47bd50 | return sprintf("%d°%.3f'%s", | |||
c36e80 | (int)floor(what),60*(what-floor(what)), directions); } } | |||
38b412 | //! @decl string latitude(void|int n) //! @decl string longitude(void|int n) //! //! Returns the nicely formatted latitude or longitude. //! | |||
dd02db | //! @int //! @value 0 //! "17°42.19'N" / "42°22.2'W" //! @value 1 //! "17.703°N" / "42.37°W" //! @value 2 //! "17°42.18'N" / "42°22.2'W" //! @value 3 //! "17°42'10.4"N" / "42°22'12"W" //! @value -1 //! "17.703" / "-42.37" //! @endint | |||
38b412 | ||||
c36e80 | string latitude(void|int n) { return prettyprint(lat,n,"NS"); } string longitude(void|int n) { return prettyprint(long,n,"EW"); } | |||
38b412 | //! Returns the standard map grid system //! for the current position. Can either //! be "UPS" or "UTM". string standard_grid() { if(lat>84.0 || lat<-80.0) return "UPS"; return "UTM"; } | |||
09f759 | //! The polar radius is how many meters the earth //! radius is at the poles (north-south direction). float polar_radius; | |||
38b412 | ||||
09f759 | //! The equatorial radius is how many meters the earth //! radius is at the equator (east-west direction). float equatorial_radius; //! Returns the flattening factor for the selected //! earth approximation ellipsoid. float flattening() { return (equatorial_radius - polar_radius) / equatorial_radius; } //! Returns the first eccentricity squared for the //! selected earth approximation ellipsoid. float eccentricity_squared() { float f = flattening(); return 2*f - pow(f,2); } //! A mapping with reference ellipsoids, which can be fed to the //! UTM converter. The mapping maps the name of the ellipsoid to //! an array where the first element is a float describing the //! equatorial radius and the second element is a float describing //! the polar radius. //! constant ellipsoids = | |||
dd02db | ([ "Airy 1830" : ({ 6377563.396, 6356256.91 }), "ATS77" : ({ 6378135.0, 6356750.304922 }), "Australian National" : ({ 6378160.0, 6356774.719 }), | |||
09f759 | "Bessel 1841" : ({ 6377397.155, 6356078.962818 }), | |||
dd02db | "Bessel 1841 Namibia" : ({ 6377483.865, 6356165.382966 }), | |||
09f759 | "Clarke 1866" : ({ 6378206.4, 6356583.799999 }), "Clarke 1880" : ({ 6378249.145, 6356514.869550 }), | |||
dd02db | "Everest" : ({ 6377298.556, 6356097.550301 }), "Everest 1830" : ({ 6377276.345, 6356075.4133 }), "Everest 1948" : ({ 6377304.063, 6356103.039 }), "Everest 1956" : ({ 6377301.243, 6356100.228368 }), "Everest 1969" : ({ 6377295.664, 6356094.667915 }), "Everest Pakistan" : ({ 6377309.613, 6356108.570542 }), "Fisher 1960" : ({ 6378166.0, 6356784.283666 }), "Fisher 1968" : ({ 6378150.0, 6356768.337303 }), "GEM 10C" : ({ 6378137.0, 6356752.0 }), | |||
09f759 | "G R S 1967" : ({ 6378160.0, 6356774.516091 }), "G R S 1975" : ({ 6378140.0, 6356755.288158 }), "G R S 1980" : ({ 6378137.0, 6356752.314140 }), | |||
dd02db | "Helmert 1906" : ({ 6378200.0, 6356818.169628 }), "Hough 1956" : ({ 6378270.0, 6356794.343479 }), "Indonesian 1974" : ({ 6378160.0, 6356774.504086 }), "International 1924" : ({ 6378388.0, 6356911.946130 }), | |||
09f759 | "Krassovsky 1940" : ({ 6378245.0, 6356863.018773 }), | |||
dd02db | "Modified Airy" : ({ 6377340.189, 6356034.448 }), "Modified Fisher 1960" : ({ 6378155.0, 6356773.3205 }), "New International 1967" : ({ 6378157.5, 6356772.2 }), "SGS 85" : ({ 6378136.0, 6356751.301569 }), | |||
09f759 | "South American 1969" : ({ 6378160.0, 6356774.719195 }), | |||
dd02db | "Sphere" : ({ 6370997.0, 6370997.0 }), | |||
09f759 | "WGS 60" : ({ 6378165.0, 6356783.286959 }), | |||
dd02db | "WGS 66" : ({ 6378145.0, 6356759.769356 }), "WGS 72" : ({ 6378135.0, 6356750.519915 }), "WGS 84" : ({ 6378137.0, 6356752.314245 }), | |||
38b412 | ]); | |||
09f759 | private constant ellipsoid_sym = ([ "airy" : "Airy 1830", "grs 1697" : "G R S 1967", "grs 1975" : "G R S 1975", "grs 1980" : "G R S 1980", "krassovsky" : "Krassovsky 1940", "mercury" : "Fisher 1960", "wgs-60" : "WGS 60", "wgs-66" : "WGS 66", "wgs-72" : "WGS 72", "wgs-84" : "WGS 84", ]); //! @decl int(0..1) set_ellipsoid(string name) //! @decl int(0..1) set_ellipsoid(float equatorial_radius, float polar_radius) //! //! Sets the equatorial and polar radius to the provided values. //! A name can also be provided, in which case the radius will be looked //! up in the ellipsoid mapping. The function returns 1 upon success, 0 on | |||
dd02db | //! failure. //! //! @string name //! @value "Airy 1830" //! @value "ATS77" //! @value "Australian National" //! @value "Bessel 1841" //! @value "Bessel 1841 Namibia" //! @value "Clarke 1866" //! @value "Clarke 1880" //! @value "Everest" //! @value "Everest 1830" //! @value "Everest 1848" //! @value "Everest 1856" //! @value "Everest 1869" //! @value "Everest Pakistan" //! @value "Fisher 1960" //! @value "Fisher 1968" //! @value "G R S 1967" //! @value "G R S 1975" //! @value "G R S 1980" //! @value "Helmert 1906" //! @value "Hough 1956" //! @value "Indonesian 1974" //! @value "Krassovsky 1940" //! @value "Mercury" //! @value "Modified Airy" //! @value "Modified Fisher 1960" //! @value "New International 1967" //! @value "SGS 85" //! @value "South American 1969" //! @value "Sphere" //! @value "WGS 60" //! @value "WGS 66" //! @value "WGS 72" //! @value "WGS 84" //! @endstring //! //! @note //! The longitude and lattitude are not converted to the new ellipsoid. //! | |||
09f759 | int(0..1) set_ellipsoid(string|float er, float|void pr) { if(stringp(er)) { if(ellipsoid_sym[lower_case(er)]) er = ellipsoid_sym[lower_case(er)]; | |||
dd02db | if(!ellipsoids[er]) foreach(indices(ellipsoids), string ep) if(lower_case(ep)==lower_case(er)) er=ep; | |||
09f759 | if(ellipsoids[er]) [er,pr] = ellipsoids[er]; else return 0; } equatorial_radius = er; polar_radius = pr; return 1; } | |||
38b412 | ||||
f4ea21 | // --- UTM code | |||
38b412 | // The following code for UTM conversion is base on code by | |||
dd02db | // Chuck Gantz and equations from USGS Bulletin 1532. | |||
38b412 | //! Returns the UTM zone number for the current longitude, with //! correction for the Svalbard deviations. int UTM_zone_number() { int zone = (int)((long + 180)/6) + 1; if( lat >= 56.0 && lat < 64.0 && long >= 3.0 && long < 12.0 ) zone = 32; // Special zones for Svalbard if( lat >= 72.0 && lat < 84.0 ) { if( long >= 0.0 && long < 9.0 ) zone = 31; else if( long >= 9.0 && long < 21.0 ) zone = 33; else if( long >= 21.0 && long < 33.0 ) zone = 35; else if( long >= 33.0 && long < 42.0 ) zone = 37; } return zone; } //! Returns the UTM letter designator for the current latitude. //! Returns "Z" if latitude is outside the UTM limits of 84N to 80S. | |||
09f759 | string UTM_zone_designator() | |||
38b412 | { if(lat > 84) return "Z"; int min = 72; foreach( "XWVUTSRQPNMLKJHGFEDC"/1, string code ) { if(lat >= min) return code; min -= 8; } return "Z"; } | |||
09f759 | //! Returns the offset within the present UTM cell. //! The result will be returned in an array of floats, | |||
38b412 | //! containing easting and northing. | |||
09f759 | array(float) UTM_offset() { | |||
c36e80 | ||||
38b412 | float k0 = 0.9996; float LatRad = lat * Math.pi/180; float LongRad = long * Math.pi/180; float LongOriginRad = ((UTM_zone_number() - 1)*6 - 180 + 3) * Math.pi/180; // +3 puts origin in middle of zone | |||
09f759 | float ecc = eccentricity_squared(); | |||
38b412 | float eccPrime = ecc/(1-ecc); | |||
09f759 | float N = equatorial_radius/sqrt(1-ecc*sin(LatRad)*sin(LatRad)); | |||
38b412 | float T = tan(LatRad)*tan(LatRad); float C = eccPrime*cos(LatRad)*cos(LatRad); float A = cos(LatRad)*(LongRad-LongOriginRad); | |||
09f759 | float M = equatorial_radius * | |||
38b412 | ((1 - ecc/4 - 3*ecc*ecc/64 - 5*ecc*ecc*ecc/256)*LatRad - (3*ecc/8 + 3*ecc*ecc/32 + 45*ecc*ecc*ecc/1024)*sin(2*LatRad) + (15*ecc*ecc/256 + 45*ecc*ecc*ecc/1024)*sin(4*LatRad) - (35*ecc*ecc*ecc/3072)*sin(6*LatRad)); float UTME = (k0*N*(A+(1-T+C)*A*A*A/6 + (5-18*T+T*T+72*C-58*eccPrime)*A*A*A*A*A/120) + 500000.0); float UTMN = (k0*(M+N*tan(LatRad)* (A*A/2+(5-T+9*C+4*C*C)*A*A*A*A/24 + (61-58*T+T*T+600*C-330*eccPrime)*A*A*A*A*A*A/720))); if(lat < 0) UTMN += 10000000.0; // 10000000 meter offset for southern hemisphere return ({ UTME, UTMN }); } //! Returns the current UTM coordinates position. //! An example output is //! "32T 442063.562 5247479.500" | |||
dd02db | //! where the parts are zone number + zone designator, | |||
38b412 | //! easting and northing. | |||
09f759 | string UTM() { return sprintf("%d%s %f %f", UTM_zone_number(), UTM_zone_designator(), @UTM_offset()); | |||
38b412 | } | |||
09f759 | //! Sets the longitude and lattitude from the given //! UTM coordinates. void set_from_UTM(int zone_number, string zone_designator, float UTME, float UTMN) { float ecc = eccentricity_squared(); float eccPrime = (ecc)/(1-ecc); | |||
38b412 | float k0 = 0.9996; float e1 = (1-sqrt(1-ecc))/(1+sqrt(1-ecc)); UTME -= 500000.0; // remove 500,000 meter offset for longitude | |||
09f759 | if(zone_designator[0]-'N' < 0) | |||
38b412 | UTMN -= 10000000.0; // remove 10,000,000 meter offset used for southern hemisphere | |||
09f759 | float LongOrigin = (zone_number - 1)*6 - 180 + 3.0; // +3 puts origin in middle of zone | |||
38b412 | float M = UTMN / k0; | |||
09f759 | float mu = M/(equatorial_radius*(1-ecc/4-3*ecc*ecc/64-5*ecc*ecc*ecc/256)); | |||
38b412 | float phi1Rad = mu + (3*e1/2-27*e1*e1*e1/32)*sin(2*mu) + (21*e1*e1/16-55*e1*e1*e1*e1/32)*sin(4*mu) +(151*e1*e1*e1/96)*sin(6*mu); float phi1 = phi1Rad * 180/Math.pi; | |||
09f759 | float N1 = equatorial_radius/sqrt(1-ecc*sin(phi1Rad)*sin(phi1Rad)); | |||
38b412 | float T1 = tan(phi1Rad)*tan(phi1Rad); float C1 = eccPrime*cos(phi1Rad)*cos(phi1Rad); | |||
09f759 | float R1 = equatorial_radius*(1-ecc)/pow(1-ecc*sin(phi1Rad)*sin(phi1Rad), 1.5); | |||
38b412 | float D = UTME/(N1*k0); lat = phi1Rad - (N1*tan(phi1Rad)/R1)*(D*D/2-(5+3*T1+10*C1-4*C1*C1-9*eccPrime)*D*D*D*D/24 +(61+90*T1+298*C1+45*T1*T1-252*eccPrime-3*C1*C1)*D*D*D*D*D*D/720); lat = lat * 180/Math.pi; long = (D-(1+2*T1+C1)*D*D*D/6+(5-2*C1+28*T1-3*C1*C1+8*eccPrime+24*T1*T1) *D*D*D*D*D/120)/cos(phi1Rad); long = LongOrigin + long * 180/Math.pi; } | |||
f4ea21 | // --- GEOREF code | |||
dd02db | //! Gives the full GEOREF position for the current position, e.g. "LDJA0511". | |||
09f759 | string GEOREF() { | |||
dd02db | int x_square = (int)((180+long)/15); int y_square = (int)((90+lat)/15); int x_sub = (int)(180+long - x_square*15); int y_sub = (int)(90+lat - y_square*15); string pos = ("ABCDEFGHJKLMNPQRSTUVWXZY"/1)[ x_square ] + ("ABCDEFGHJKLM"/1)[ y_square ] + ("ABCDEFGHJKLMNPQ"/1)[ x_sub ] + ("ABCDEFGHJKLMNPQ"/1)[ y_sub ]; return sprintf("%s%02d%02d", pos, (int)floor(60*(long-floor(long))), (int)floor(60*(lat-floor(lat)))); } | |||
09f759 | ||||
f4ea21 | // FIXME: set_from_GEOREF // --- RT 38 code #define DEG2RAD(DEG) ((Math.pi/180.0)*(DEG)) #define RAD2DEG(RAD) ((RAD)*(180.0/Math.pi)) | |||
9eaf1d | protected constant rt38_y0 = 1500000; protected constant rt38_lng0 = DEG2RAD(15.80827778); protected constant rt38_k0a = 6366742.5194; protected constant rt38_beta1 = 0.00083522527; protected constant rt38_beta2 = 0.000000756302; protected constant rt38_beta3 = 0.000000001193; protected constant rt38_delta1 = 0.000835225613; protected constant rt38_delta2 = 0.000000058706; protected constant rt38_delta3 = 0.000000000166; | |||
f4ea21 | //! array(float) RT38() { float rlat=DEG2RAD(lat); float rlong=DEG2RAD(long); float rlat2 = rlat - sin(rlat) * cos(rlat) * DEG2RAD(1376.68809 + 7.64689 * pow(sin(rlat),2) + 0.053 * pow(sin(rlat),4) + 0.0004 * pow(sin(rlat),6)) /3600; float ksi = atan2(tan(rlat2) , cos(rlong - rt38_lng0)); float eta = atanh(cos(rlat2) * sin(rlong - rt38_lng0)); float x = rt38_k0a * (ksi + rt38_beta1 * sin(2 * ksi) * cosh(2 * eta) + rt38_beta2 * sin(4 * ksi) * cosh(4 * eta) + rt38_beta3 * sin(6 * ksi) * cosh(6 * eta)); float y = rt38_y0 + rt38_k0a * (eta + rt38_beta1 * cos(2 * ksi) * sinh(2 * eta) + rt38_beta2 * cos(4 * ksi) * sinh(4 * eta) + rt38_beta3 * cos(6 * ksi) * sinh(6 * eta)); return ({x, y}); } //! Sets the longitude and lattitude from the given //! RT38 coordinates. void set_from_RT38(int|float|string x_n,int|float|string y_e) { if (stringp(x_n)) x_n=(float)((x_n+"0000000000")[..6]); if (stringp(y_e)) y_e=(float)((y_e+"0000000000")[..6]); float ksi = x_n / rt38_k0a; float eta = (y_e - rt38_y0) / rt38_k0a; float ksi2 = ksi - rt38_delta1 * sin(2 * ksi) * cosh(2 * eta) - rt38_delta2 * sin(4 * ksi) * cosh(4 * eta) - rt38_delta3 * sin(6 * ksi) * cosh(6 * eta); float eta2 = eta - rt38_delta1 * cos(2 * ksi) * sinh(2 * eta) - rt38_delta2 * cos(4 * ksi) * sinh(4 * eta) - rt38_delta3 * cos(6 * ksi) * sinh(6 * eta); float rlat2 = asin(sin(ksi2) / cosh(eta2)); float rlong = atan2(sinh(eta2) , cos(ksi2)) + rt38_lng0; float rlat = rlat2 + sin(rlat2) * cos(rlat2) * DEG2RAD(1385.93836 - 10.89576 * pow(sin(rlat2),2) + 0.11751 * pow(sin(rlat2),4) - 0.00139 * pow(sin(rlat2),6)) / 3600; lat = RAD2DEG(rlat); long = RAD2DEG(rlong); } // --- Height releated code | |||
dd02db | // Ten by Ten Degree WGS-84 Geoid Heights from -180 to +170 Degrees of Longitude. // Defense Mapping Agency. 12 Jan 1987. GPS UE Relevant WGS-84 Data Base Package. constant height_values = ({ ({ 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13 }), // 90 deg N ({ 3,1,-2,-3,-3,-3,-1,3,1,5,9,11,19,27,31,34,33,34,33,34,28,23,17,13,9,4,4,1,-2,-2,0,2,3,2,1,1 }), ({ 2,2,1,-1,-3,-7,-14,-24,-27,-25,-19,3,24,37,47,60,61,58,51,43,29,20,12,5,-2,-10,-14,-12,-10,-14,-12,-6,-2,3,6,4 }), ({ 2,9,17,10,13,1,-14,-30,-39,-46,-42,-21,6,29,49,65,60,57,47,41,21,18,14,7,-3,-22,-29,-32,-32,-26,-15,-2,13,17,19,6 }), ({ -8,8,8,1,-11,-19,-16,-18,-22,-35,-40,-26,-12,24,45,63,62,59,47,48,42,28,12,-10,-19,-33,-43,-42,-43,-29,-2,17,23,22,6,2 }), ({ -12,-10,-13,-20,-31,-34,-21,-16,-26,-34,-33,-35,-26,2,33,59,52,51,52,48,35,40,33,-9,-28,-39,-48,-59,-50,-28,3,23,37,18,-1,-11 }), ({ -7,-5,-8,-15,-28,-40,-42,-29,-22,-26,-32,-51,-40,-17,17,31,34,44,36,28,29,17,12,-20,-15,-40,-33,-34,-34,-28,7,29,43,20,4,-6 }), ({ 5,10,7,-7,-23,-39,-47,-34,-9,-10,-20,-45,-48,-32,-9,17,25,31,31,26,15,6,1,-29,-44,-61,-67,-59,-36,-11,21,39,49,39,22,10 }), ({ 13,12,11,2,-11,-28,-38,-29,-10,3,1,-11,-41,-42,-16,3,17,33,22,23,2,-3,-7,-36,-59,-90,-95,-63,-24,12,53,60,58,46,36,26 }), ({ 22,16,17,13,1,-12,-23,-20,-14,-3,14,10,-15,-27,-18,3,12,20,18,12,-13,-9,-28,-49,-62,-89,-102,-63,-9,33,58,73,74,63,50,32 }), ({ 36,22,11,6,-1,-8,-10,-8,-11,-9,1,32,4,-18,-13,-9,4,14,12,13,-2,-14,-25,-32,-38,-60,-75,-63,-26,0,35,52,68,76,64,52 }), ({ 51,27,10,0,-9,-11,-5,-2,-3,-1,9,35,20,-5,-6,-5,0,13,17,23,21,8,-9,-10,-11,-20,-40,-47,-45,-25,5,23,45,58,57,63 }), ({ 46,22,5,-2,-8,-13,-10,-7,-4,1,9,32,16,4,-8,4,12,15,22,27,34,29,14,15,15,7,-9,-25,-37,-39,-23,-14,15,33,34,45 }), ({ 21,6,1,-7,-12,-12,-12,-10,-7,-1,8,23,15,-2,-6,6,21,24,18,26,31,33,39,41,30,24,13,-2,-20,-32,-33,-27,-14,-2,5,20 }), ({ -15,-18,-18,-16,-17,-15,-10,-10,-8,-2,6,14,13,3,3,10,20,27,25,26,34,39,45,45,38,39,28,13,-1,-15,-22,-22,-18,-15,-14,-10 }), ({ -45,-43,-37,-32,-30,-26,-23,-22,-16,-10,-2,10,20,20,21,24,22,17,16,19,25,30,35,35,33,30,27,10,-2,-14,-23,-30,-33,-29,-35,-43 }), ({ -61,-60,-61,-55,-49,-44,-38,-31,-25,-16,-6,1,4,5,4,2,6,12,16,16,17,21,20,26,26,22,16,10,-1,-16,-29,-36,-46,-55,-54,-59 }), ({ -53,-54,-55,-52,-48,-42,-38,-38,-29,-26,-26,-24,-23,-21,-19,-16,-12,-8,-4,-1,1,4,4,6,5,4,2,-6,-15,-24,-33,-40,-48,-50,-53,-52 }), ({ -30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30,-30 }) // 90 deg S }); //! Returns a very crude approximation of where the ground level is //! at the current position, compared against the ellipsoid shell. //! WGS-84 is assumed, but the approximation is so bad that it doesn't //! matter which of the standard ellipsoids is used. float approx_height() { int this_lat = (int)(lat/10)+9; int next_lat = this_lat+1%18; int this_long = (int)(long/10)+18; int next_long = this_long+1%36; float lat_dev = lat-(int)lat; float long_dev = long-(int)long; return height_values[this_lat][this_long] * lat_dev * long_dev + height_values[this_lat][next_long] * lat_dev * (1-long_dev) + height_values[next_lat][this_long] * (1-lat_dev) * long_dev + height_values[next_lat][next_long] * (1-lat_dev) * (1-long_dev); | |||
09f759 | } | |||
38b412 | ||||
dd02db | //! Returns the current position as Earth Centered Earth Fixed //! Cartesian Coordinates. //! @returns //! ({ X, Y, Z }) array(float) ECEF() { float N = equatorial_radius / sqrt(1-eccentricity_squared()*sin(lat)*sin(lat)); | |||
d5f82e | constant torad=Math.pi/180; float X = (N + alt)*cos(lat*torad)*cos(long*torad); float Y = (N + alt)*cos(lat*torad)*sin(long*torad); float Z = (N*(1-eccentricity_squared())+alt) * sin(lat*torad); | |||
dd02db | return ({ X, Y, Z }); } | |||
38b412 | // --- "Technical" methods -------------- | |||
c36e80 | string|array cast(string to) { if (to[..4]=="array") return ({lat,long}); if (to[..5]=="string") return latitude()+" "+longitude(); error("can't cast to %O\n",to); } | |||
7b8a8c | //! | |||
c36e80 | int __hash() { return (int)(lat*3600000+long*3600000); } | |||
7b8a8c | //! | |||
c36e80 | int `==(object pos) { | |||
a9b828 | return (objectp(pos) && pos->lat==lat && pos->long==long); | |||
c36e80 | } | |||
7b8a8c | //! | |||
c36e80 | int `<(object pos) { if (pos->lat>lat) return 1; else if (pos->lat==lat && pos->long>long) return 1; return 0; } | |||
7b8a8c | //! | |||
c36e80 | int `>(object pos) { if (pos->lat<lat) return 1; else if (pos->lat==lat && pos->long<long) return 1; return 0; } | |||
7b8a8c | //! string _sprintf(int|void t) | |||
c36e80 | { | |||
f4ea21 | return t=='O' && sprintf("%O(%s, %s)", this_program, latitude(), longitude()); | |||
c36e80 | } | |||
d5f82e | //! Calculate the euclidian distance between two Geography.Position. //! Result is in meter. This uses the ECEF function. float euclidian_distance(this_program p) { return sqrt(`+(@map(Array.sum_arrays( `-,ECEF(),p->ECEF()), lambda(float f) { return f*f; }))); } | |||
a9b828 | // encoder array(float) _encode() { return ({lat,long,alt}); } void _decode(array(float) v) { create(@v); } |