1
  
2
  
3
  
4
  
5
  
6
  
7
  
8
  
9
  
10
  
11
  
12
  
13
  
14
  
15
  
16
  
17
  
18
  
19
  
20
  
21
  
22
  
23
  
24
  
25
  
26
  
27
  
28
  
29
  
30
  
31
  
32
  
33
  
34
  
35
  
36
  
37
  
38
  
39
  
40
  
41
  
42
  
43
  
44
  
45
  
46
  
47
  
48
  
49
  
50
  
51
  
52
  
53
  
54
  
55
  
56
  
57
  
58
  
59
  
60
  
61
  
62
  
63
  
64
  
65
  
66
  
67
  
68
  
69
  
70
  
71
  
72
  
73
  
74
  
75
  
76
  
77
  
78
  
79
  
80
  
81
  
82
  
83
  
84
  
85
  
86
  
87
  
88
  
89
  
90
  
91
  
92
  
93
  
94
  
95
  
96
  
97
  
98
  
99
  
100
  
101
  
102
  
103
  
104
  
105
  
106
  
107
  
108
  
109
  
110
  
111
  
112
  
113
  
114
  
115
  
116
  
117
  
118
  
119
  
120
  
121
  
122
  
123
  
124
  
125
  
126
  
127
  
128
  
129
  
130
  
131
  
132
  
133
  
134
  
135
  
136
  
137
  
138
  
139
  
140
  
141
  
142
  
143
  
144
  
145
  
146
  
147
  
148
  
149
  
150
  
151
  
152
  
153
  
154
  
155
  
156
  
157
  
158
  
159
  
160
  
161
  
162
  
163
  
164
  
165
  
166
  
167
  
168
  
169
  
170
  
171
  
172
  
173
  
174
  
175
  
176
  
177
  
178
  
179
  
180
  
181
  
182
  
183
  
184
  
185
  
186
  
187
  
188
  
189
  
190
  
191
  
192
  
193
  
194
  
195
  
196
  
197
  
198
  
199
  
200
  
201
  
202
  
203
  
204
  
205
  
206
  
207
  
208
  
209
  
210
  
211
  
212
  
213
  
214
  
215
  
216
  
217
  
218
  
219
  
220
  
221
  
222
  
223
  
224
  
225
  
226
  
227
  
228
  
229
  
230
  
231
  
232
  
233
  
234
  
235
  
236
  
237
  
238
  
239
  
240
  
241
  
242
  
243
  
244
  
245
  
246
  
247
  
248
  
249
  
250
  
251
  
252
  
253
  
254
  
255
  
256
  
257
  
258
  
259
  
260
  
261
  
262
  
263
  
264
  
265
  
266
  
267
  
268
  
269
  
270
  
271
  
272
  
273
  
274
  
275
  
276
  
277
  
278
  
279
  
280
  
281
  
282
  
283
  
284
  
285
  
286
  
287
  
288
  
289
  
290
  
291
  
292
  
293
  
294
  
295
  
296
  
297
  
298
  
299
  
300
  
301
  
302
  
303
  
304
  
305
  
306
  
307
  
308
  
309
  
310
  
311
  
312
  
313
  
314
  
315
  
316
  
317
  
318
  
319
  
320
  
321
  
322
  
323
  
324
  
325
  
326
  
327
  
328
  
329
  
330
  
331
  
332
  
333
  
334
  
335
  
336
  
337
  
338
  
339
  
340
  
341
  
342
  
343
  
344
  
345
  
346
  
347
  
348
  
349
  
350
  
351
  
352
  
353
  
354
  
355
  
356
  
357
  
358
  
359
  
360
  
361
  
362
  
363
  
364
  
365
  
366
  
367
  
368
  
369
  
370
  
371
  
372
  
373
  
374
  
375
  
376
  
377
  
378
  
379
  
380
  
381
  
382
  
383
  
384
  
385
  
386
  
387
  
388
  
389
  
390
  
391
  
392
  
393
  
394
  
395
  
396
  
397
  
398
  
399
  
400
  
401
  
402
  
403
  
404
  
405
  
406
  
407
  
408
  
409
  
410
  
411
  
412
  
413
  
414
  
415
  
416
  
417
  
418
  
419
  
420
  
421
  
422
  
423
  
424
  
425
  
426
  
427
  
428
  
429
  
430
  
431
  
432
  
433
  
434
  
435
  
436
  
437
  
438
  
439
  
440
  
441
  
442
  
443
  
444
  
445
  
446
  
447
  
448
  
449
  
450
  
451
  
452
  
453
  
454
  
455
  
456
  
457
  
458
  
459
  
460
  
461
  
462
  
463
  
464
  
465
  
466
  
467
  
468
  
469
  
470
  
471
  
472
  
473
  
474
  
475
  
476
  
477
  
478
  
479
  
480
  
481
  
482
  
483
  
484
  
485
  
486
  
487
  
488
  
489
  
490
  
491
  
492
  
493
  
494
  
495
  
496
  
497
  
498
  
499
  
500
  
501
  
502
  
503
  
504
  
505
  
506
  
507
  
508
  
509
  
510
  
511
  
512
  
513
  
514
  
515
  
516
  
517
  
518
  
519
  
520
  
521
  
522
  
523
  
524
  
525
  
526
  
527
  
528
  
529
  
530
  
531
  
532
  
533
  
534
  
535
  
536
  
537
  
538
  
539
  
540
  
541
  
542
  
543
  
544
  
545
  
546
  
547
  
548
  
549
  
550
  
551
  
552
  
553
  
554
  
555
  
556
  
557
  
558
  
559
  
560
  
561
  
562
  
563
  
564
  
565
  
566
  
567
  
568
  
569
  
570
  
571
  
572
  
573
  
574
  
575
  
576
  
577
  
578
  
579
  
580
  
581
  
582
  
583
  
584
  
585
  
586
  
587
  
588
  
589
  
590
  
591
  
592
  
593
  
594
  
595
  
596
  
597
  
598
  
599
  
600
  
601
  
602
  
603
  
604
  
605
  
606
  
607
  
608
  
609
  
610
  
611
  
612
  
613
  
614
  
615
  
616
  
617
  
618
  
619
  
620
  
621
  
622
  
623
  
624
  
625
  
626
  
627
  
628
  
629
  
630
  
631
  
632
  
633
  
634
  
635
  
636
  
637
  
638
  
639
  
640
  
641
  
642
  
643
  
644
  
645
  
646
  
647
  
648
  
649
  
650
  
651
  
652
  
653
  
654
  
655
  
656
  
657
  
658
  
659
  
660
  
661
  
662
  
663
  
664
  
665
  
666
  
667
  
668
  
669
  
670
  
671
  
672
  
673
  
674
  
675
  
676
  
677
  
678
  
679
  
680
  
681
  
682
  
683
  
684
  
685
  
686
  
687
  
688
  
689
  
690
  
691
  
692
  
693
  
694
  
695
  
696
  
697
  
698
  
699
  
700
  
701
  
702
  
703
  
704
  
705
  
706
  
707
  
708
  
709
  
710
  
711
  
712
  
713
  
714
  
715
  
716
  
717
  
718
  
719
  
720
  
721
  
722
  
723
  
724
  
725
  
726
  
727
  
728
  
729
  
730
  
731
  
732
  
733
  
734
  
735
  
736
  
737
  
738
  
739
  
740
  
741
  
742
  
743
  
744
  
745
  
746
  
747
  
748
  
749
  
750
  
751
  
752
  
753
  
754
  
755
  
756
  
757
  
758
  
759
  
760
  
761
  
762
  
763
  
764
  
765
  
766
  
767
  
768
  
769
  
770
  
771
  
772
  
773
  
774
  
775
  
776
  
777
  
778
  
779
  
780
  
781
  
782
  
783
  
784
  
785
  
786
  
787
  
788
  
789
  
790
  
791
  
792
  
793
  
794
  
795
  
796
  
797
  
798
  
799
  
800
  
801
  
802
  
803
  
804
  
805
  
806
  
807
  
808
  
809
  
810
  
811
  
812
  
813
  
814
  
815
  
816
  
817
  
818
  
819
  
820
  
821
  
822
  
823
  
824
  
825
  
826
  
827
  
828
  
829
  
830
  
831
  
832
  
833
  
834
  
835
  
836
  
837
  
838
  
839
  
840
  
841
  
842
  
843
  
844
  
845
  
846
  
847
  
848
  
849
  
850
  
851
  
852
  
853
  
854
  
855
  
856
  
857
  
858
  
859
  
860
  
861
  
862
  
863
  
864
  
865
  
866
  
867
  
868
  
869
  
870
  
871
  
872
  
873
  
874
  
875
  
876
  
877
  
878
  
879
  
880
  
881
  
882
  
883
  
884
  
885
  
886
  
887
  
888
  
889
  
890
  
891
  
892
  
893
  
894
  
895
  
896
  
897
  
898
  
899
  
900
  
901
  
902
  
903
  
904
  
905
  
906
  
907
  
908
  
909
  
910
  
911
  
912
  
913
  
914
  
915
  
916
  
917
  
918
  
919
  
920
  
921
  
922
  
923
  
924
  
925
  
926
  
927
  
928
  
929
  
930
  
931
  
932
  
933
  
934
  
935
  
936
  
937
  
938
  
939
  
940
  
941
  
942
  
943
  
944
  
945
  
946
  
947
  
948
  
949
  
950
  
951
  
952
  
953
  
954
  
955
  
956
  
957
  
958
  
959
  
960
  
961
  
962
  
963
  
964
  
965
  
966
  
967
  
968
  
969
  
970
  
971
  
972
  
973
  
974
  
975
  
976
  
977
  
978
  
979
  
980
  
981
  
982
  
983
  
984
  
985
  
986
  
987
  
988
  
989
  
990
  
991
  
992
  
993
  
994
  
995
  
996
  
997
  
998
  
999
  
1000
  
1001
  
1002
  
1003
  
1004
  
1005
  
1006
  
1007
  
1008
  
1009
  
1010
  
1011
  
1012
  
1013
  
1014
  
1015
  
1016
  
1017
  
1018
  
1019
  
1020
  
1021
  
1022
  
1023
  
1024
  
1025
  
1026
  
1027
  
1028
  
1029
  
1030
  
1031
  
1032
  
1033
  
1034
  
1035
  
1036
  
1037
  
1038
  
1039
  
1040
  
1041
  
1042
  
1043
  
1044
  
1045
  
1046
  
1047
  
1048
  
1049
  
1050
  
1051
  
1052
  
1053
  
1054
  
1055
  
1056
  
1057
  
1058
  
1059
  
1060
  
1061
  
1062
  
1063
  
1064
  
1065
  
1066
  
1067
  
1068
  
1069
  
1070
  
1071
  
1072
  
1073
  
1074
  
1075
  
1076
  
1077
  
1078
  
1079
  
1080
  
<chapter title="Data types"> 
 
<p>In this chapter we will discuss all the different ways to store data 
in Pike in detail. We have seen examples of many of these, but we haven't 
really gone into how they work. In this chapter we will also see which 
operators and functions work with the different types. 
There are two categories of data types in Pike: <b>basic types</b>, and 
<b>pointer types</b>. The difference is that basic types are copied when 
assigned to a variable. With pointer types, merely the pointer is copied, 
that way you get two variables pointing to the same thing.</p> 
 
<section title="Basic types"> 
 
<p>The basic types are <tt>int</tt>, <tt>float</tt> and <tt>string</tt>. 
For you who are accustomed to C or C++, it may seem odd that a string 
is a basic type as opposed to an array of char, but it is surprisingly 
easy to get used to.</p> 
 
<subsection title="int"> 
 
<p><tt>Int</tt> is short for integer, or integer number. They are 
normally 32 bit integers, which means that they are in the range 
-2147483648 to 2147483647. (Note that on some machines an <tt>int</tt> 
might be larger than 32 bits.) If Pike is compiled with bignum support 
the 32 bit limitation does not apply and thus the integers can be of 
arbitrary size.  Since they are integers, no decimals are allowed. An 
integer constant can be written in several ways:</p> 
 
<matrix> 
<r><c><b>Pattern</b></c><c><b>Example</b></c><c><b>Description</b></c></r> 
<r><c>-?[1-9][0-9]*</c><c>78</c><c>Decimal number</c></r> 
<r><c>-?0[0-9]*</c><c>0116</c><c>Octal number</c></r> 
<r><c>-?0[xX][0-9a-fA-F]+</c><c>0x4e</c><c>Hexadecimal number</c></r> 
<r><c>-?0[bB][01]+</c><c>0b1001110</c><c>Binary number</c></r> 
<r><c>-?'\\?.'</c><c>'N'</c><c>ASCII character</c></r> 
</matrix> 
 
<p>All of the above represent the number 78. Octal notation means that 
each digit is worth 8 times as much as the one after. Hexadecimal notation 
means that each digit is worth 16 times as much as the one after. 
Hexadecimal notation uses the letters a, b, c, d, e and f to represent the 
numbers 10, 11, 12, 13, 14 and 15. In binary notation every digit is worth 
twice the value of the succeding digit, but only 1:s and 0:s are used. The 
ASCII notation gives the ASCII value of the character between the single 
quotes. In this case the character is <tt>N</tt> which just happens to be 
78 in ASCII. Some characters, like special characters as newlines, can not 
be placed within single quotes. The special generation sequence for those 
characters, listed under strings, must be used instead. Specifically this 
applies to the single quote character itself, which has to be written as 
<expr>'\''</expr>.</p> 
 
<p>When pike is compiled with bignum support integers in never 
overflow or underflow when they reach the system-defined 
maxint/minint. Instead they are silently converted into bignums. 
Integers are usually implemented as 2-complement 32-bits integers, and 
thus are limited within -2147483648 and 2147483647. This may however 
vary between platforms, especially 64-bit platforms. <fixme>Conversion 
back to normal integer?</fixme></p> 
 
<p>All the arithmetic, bitwise and comparison operators can be used on 
integers. Also note these functions:</p> 
 
<dl> 
<dt><tt>int <ref>intp</ref>(mixed <i>x</i>)</tt></dt> 
<dd>This function returns 1 if <i>x</i> is an int, 0 otherwise.</dd> 
<dt><tt>int <ref>random</ref>(int <i>x</i>)</tt></dt> 
<dd>This function returns a random number greater or equal to zero and smaller than <i>x</i>.</dd> 
<dt><tt>int <ref>reverse</ref>(int <i>x</i>)</tt></dt> 
<dd>This function reverses the order of the bits in <i>x</i> and returns the new number. It is not very useful.</dd> 
<dt><tt>int <ref>sqrt</ref>(int <i>x</i>)</tt></dt> 
<dd>This computes the square root of <i>x</i>. The value is always rounded down.</dd> 
</dl> 
</subsection> 
 
<subsection title="float"> 
<p>Although most programs only use integers, they are unpractical when doing 
trigonometric calculations, transformations or anything else where you 
need decimals. For this purpose you use <expr>float</expr>. Floats are 
normally 32 bit floating point numbers, which means that they can represent 
very large and very small numbers, but only with 9 accurate digits. To write 
a floating point constant, you just put in the decimals or write it in the 
exponential form:</p> 
 
<matrix> 
<r><c><b>Pattern</b></c><c><b>Example</b></c><c><b>Equals</b></c></r> 
<r><c>-?[0-9]*\.[0-9]+</c><c>3.1415926</c><c>3.1415926</c></r> 
<r><c>-?[0-9]+e-?[0-9]+</c><c>-5e3</c><c>-5000.0</c></r> 
<r><c>-?[0-9]*\.[0-9]+e-?[0-9]+</c><c>.22e-2</c><c>0.0022</c></r> 
</matrix> 
 
<p>Of course you can have any number of decimals to increase the accuracy. 
Usually digits after the ninth digit are ignored, but on some architectures 
<expr>float</expr> might have higher accuracy than that. In the exponential 
form, <expr>e</expr> means "times 10 to the power of", so <expr>1.0e9</expr> 
is equal to "1.0 times 10 to the power of 9". <fixme>float and int is not 
compatible and no implicit cast like in C++</fixme></p> 
 
<p>All the arithmetic and comparison operators can be used on floats. 
Also, these functions operates on floats:</p> 
 
<dl> 
<dt>trigonometric functions</dt> 
<dd> The trigonometric functions are: <ref>sin</ref>, <ref>asin</ref>, 
     <ref>cos</ref>, <ref>acos</ref>, <ref>tan</ref> and <ref>atan</ref>. 
     If you do not know what these functions do you probably don't 
     need them. Asin, acos and atan are of course short for 
     arc sine, arc cosine and arc tangent. On a calculator they 
     are often known as inverse sine, inverse cosine and 
     inverse tangent.</dd> 
 
<dt><tt>float <ref>log</ref>(float <i>x</i>)</tt></dt> 
<dd>This function computes the natural logarithm of <i>x</i>,</dd> 
 
<dt><tt>float <ref>exp</ref>(float <i>x</i>)</tt></dt> 
<dd>This function computes <b>e</b> raised to the power of <i>x</i>.</dd> 
 
<dt><tt>float <ref>pow</ref>(float|int <i>x</i>, float|int <i>y</i>)</tt></dt> 
<dd>This function computes <i>x</i> raised to the power of <i>y</i>.</dd> 
 
<dt><tt>float <ref>sqrt</ref>(float <i>x</i>)</tt></dt> 
<dd>This computes the square root of <i>x</i>.</dd> 
 
<dt><tt>float <ref>floor</ref>(float <i>x</i>)</tt></dt> 
<dd>This function computes the largest integer value less than or equal 
    to <i>x</i>. Note that the value is returned as a <tt>float</tt>, 
    not an <tt>int</tt>.</dd> 
 
<dt><tt>float <ref>ceil</ref>(float <i>x</i>)</tt></dt> 
<dd>This function computes the smallest integer value greater than or 
    equal to <i>x</i> and returns it as a <tt>float</tt>.</dd> 
 
<dt><tt>float <ref>round</ref>(float <i>x</i>)</tt></dt> 
<dd>This function computes the closest integer value to <i>x</i>  
    and returns it as a <tt>float</tt>.</dd> 
</dl> 
</subsection> 
 
<subsection title="string"> 
 
<p>A <tt>string</tt> can be seen as an array of values from 0 to 2³²-1. 
Usually a string contains text such as a word, a sentence, a page or 
even a whole book. But it can also contain parts of a binary file, 
compressed data or other binary data. Strings in Pike are <b>shared</b>, 
which means that identical strings share the same memory space. This 
reduces memory usage very much for most applications and also speeds 
up string comparisons. We have already seen how to write a constant 
string:</p> 
 
<example> 
"hello world" // hello world 
"he" "llo"    // hello 
"\116"        // N (116 is the octal ASCII value for N) 
"\t"          // A tab character 
"\n"          // A newline character 
"\r"          // A carriage return character 
"\b"          // A backspace character 
"\0"          // A null character 
"\""          // A double quote character 
"\\"          // A singe backslash 
"\x4e"        // N (4e is the hexadecimal ASCII value for N) 
"\d78"        // N (78 is the decimal ACII value for N) 
"hello world\116\t\n\r\b\0\"\\" // All of the above 
"\xff"        // the character 255 
"\xffff"      // the character 65536 
"\xffffff"    // the character 16777215 
"\116""3"     // 'N' followed by a '3' 
</example> 
 
<matrix> 
<r><c><b>Pattern</b></c><c><b>Example</b></c></r> 
<r><c>.</c><c>N</c></r> 
<r><c>\\[0-7]+</c><c>\116</c></r> 
<r><c>\\x[0-9a-fA-F]+</c><c>\x4e</c></r> 
<r><c>\\d[0-9]+</c><c>\d78</c></r> 
<r><c>\\u[0-9a-fA-F]+ (4)</c><c>\u004E</c></r> 
<r><c>\\U[0-9a-fA-F]+ (8)</c><c>\U0000004e</c></r> 
</matrix> 
 
<matrix> 
<r><c><b>Sequence</b></c><c><b>ASCII code</b></c><c><b>Charcter</b></c></r> 
<r><c>\a</c><c>7</c><c>An acknowledge character</c></r> 
<r><c>\b</c><c>8</c><c>A backspace character</c></r> 
<r><c>\t</c><c>9</c><c>A tab character</c></r> 
<r><c>\n</c><c>10</c><c>A newline character</c></r> 
<r><c>\v</c><c>11</c><c>A vertical tab character</c></r> 
<r><c>\f</c><c>12</c><c>A form feed character</c></r> 
<r><c>\r</c><c>13</c><c>A carriage return character</c></r> 
<r><c>\"</c><c>34</c><c>A double quote character</c></r> 
<r><c>\\</c><c>92</c><c>A backslash character</c></r> 
</matrix> 
 
<p>As you can see, any sequence of characters within double quotes is a string. 
The backslash character is used to escape characters that are not allowed or 
impossible to type. As you can see, <tt>\t</tt> is the sequence to produce 
a tab character, <tt>\\</tt> is used when you want one backslash and 
<tt>\"</tt> is used when you want a double quote (<tt>"</tt>) to be a part 
of the string instead of ending it. 
Also, <tt>\<i>XXX</i></tt> where <i>XXX</i> is an 
octal number from 0 to 37777777777 or <tt>\x<i>XX</i></tt> where <i>XX</i> 
is 0 to ffffffff lets you write any character you want in the 
string, even null characters. From version 0.6.105, you may also use 
<tt>\d<i>XXX</i></tt> where <i>XXX</i> is 0 to 2³²-1. If you write two constant 
strings after each other, they will be concatenated into one string.</p> 
 
<p>You might be surprised to see that individual characters can have values 
up to 2³²-1 and wonder how much memory that use. Do not worry, Pike 
automatically decides the proper amount of memory for a string, so all 
strings with character values in the range 0-255 will be stored with 
one byte per character. You should also beware that not all functions 
can handle strings which are not stored as one byte per character, so 
there are some limits to when this feature can be used.</p> 
 
<p>Although strings are a form of arrays, they are immutable. This means that 
there is no way to change an individual character within a string without 
creating a new string. This may seem strange, but keep in mind that strings 
are shared, so if you would change a character in the string <tt>"foo"</tt>, 
you would change *all* <tt>"foo"</tt> everywhere in the program.</p> 
 
<p>However, the Pike compiler will allow you to to write code like you could 
change characters within strings, the following code is valid and works:</p> 
 
<example> 
string s="hello torld"; 
s[6]='w'; 
</example> 
 
<p>However, you should be aware that this does in fact create a new string and 
it may need to copy the string <i>s</i> to do so. This means that the above 
operation can be quite slow for large strings. You have been warned. 
Most of the time, you can use <ref>replace</ref>, <ref>sscanf</ref>, 
<ref>`/</ref> 
or some other high-level string operation to avoid having to use the above 
construction too much.</p> 
 
<p>All the comparison operators plus the operators listed here can be used on strings:</p> 
 
<dl> 
<dt> Summation</dt> 
<dd> Adding strings together will simply concatenate them. 
     <tt>"foo"+"bar"</tt> becomes <tt>"foobar"</tt>.</dd> 
<dt> Subtraction</dt> 
<dd> Subtracting one string from another will remove all occurrences 
     of the second string from the first one. So  
     <tt>"foobarfoogazonk" - "foo"</tt> results in <tt>"bargazonk"</tt>.</dd> 
<dt> Indexing</dt> 
<dd> Indexing will let you get the ASCII value of any character in a string. 
     The first index is zero.</dd> 
<dt> Range</dt> 
<dd> The range operator will let you copy any part of the string into a 
     new string. Example: <tt>"foobar"[2..4]</tt> will return <tt>"oba"</tt>.</dd> 
<dt> Division</dt> 
<dd> Division will let you divide a string at every occurrence of a word or 
     character. For instance if you do <tt>"foobargazonk" / "o"</tt> the 
     result would be <tt>({"f","","bargaz","nk"})</tt>. It is also possible 
     to divide the string into strings of length N by dividing the string 
     by N. If N is converted to a float before dividing, the reminder of 
     the division will be included in the result.</dd> 
<dt> Multiplication</dt> 
<dd> The inverse of the division operator can be accomplished by multiplying 
     an array with a string. So if you evaluate 
     <tt>({"f","","bargaz","nk"}) * "o"</tt> the result would be 
     <tt>"foobargazonk"</tt>.</dd> 
<dt> Modulo</dt> 
<dd> To complement the division operator, you can do <tt>string</tt> % <tt>int</tt>. 
     This operator will simply return the part of the string that was not  
     included in the array returned by <tt>string</tt> / <tt>int</tt></dd> 
</dl> 
 
<p>Also, these functions operates on strings:</p> 
 
<dl> 
<dt><tt>string <ref>String.capitalize</ref>(string <i>s</i>)</tt></dt> 
<dd>Returns <i>s</i> with the first character converted to upper case.</dd> 
 
<dt><tt>int <ref>String.count</ref>(string <i>haystack</i>, string <i>needle</i>)</tt></dt> 
<dd>Returns the number of occurances of <i>needle</i> in <i>haystack</i>. 
    Equvivalent to <tt><ref>sizeof</ref>(<i>haystack</i>/<i>needle</i>)-1</tt>.</dd> 
 
<dt><tt>int <ref>String.width</ref>(string <i>s</i>)</tt></dt> 
<dd>Returns the width <i>s</i> in bits (8, 16 or 32).</dd> 
 
<dt><tt>string <ref>lower_case</ref>(string <i>s</i>)</tt></dt> 
<dd>Returns <i>s</i> with all the upper case characters converted to lower case.</dd> 
 
<dt><tt>string <ref>replace</ref>(string <i>s</i>, string <i>from</i>, string <i>to</i>)</tt></dt> 
<dd>This function replaces all occurrences of the string <i>from</i> 
    in <i>s</i> with <i>to</i> and returns the new string.</dd> 
 
<dt><tt>string <ref>reverse</ref>(string <i>s</i>)</tt></dt> 
<dd>This function returns a copy of <i>s</i> with the last byte from <i>s</i> 
    first, the second last in second place and so on.</dd> 
 
<dt><tt>int <ref>search</ref>(string <i>haystack</i>, string <i>needle</i>)</tt></dt> 
<dd>This function finds the first occurrence of <i>needle</i> in 
    <i>haystack</i> and returns where it found it.</dd> 
 
<dt><tt>string <ref>sizeof</ref>(string <i>s</i>)</tt></dt> 
<dd>Same as <tt><ref>strlen</ref>(<i>s</i>)</tt>, 
returns the length of the string.</dd> 
 
<dt><tt>int <ref>stringp</ref>(mixed <i>s</i>)</tt></dt> 
<dd>This function returns 1 if <i>s</i> is a string, 0 otherwise.</dd> 
 
<dt><tt>int <ref>strlen</ref>(string <i>s</i>)</tt></dt> 
<dd>Returns the length of the string <i>s</i>.</dd> 
 
<dt><tt>string <ref>upper_case</ref>(string <i>s</i>)</tt></dt> 
<dd>This function returns <i>s</i> with all lower case characters converted 
    to upper case.</dd> 
</dl> 
</subsection> 
</section> 
 
<section title="Pointer types"> 
 
<p>The basic types are, as the name implies, very basic. They are the foundation, 
most of the pointer types are merely interesting ways to store the basic 
types. The pointer types are <tt>array</tt>, <tt>mapping</tt>, 
<tt>multiset</tt>, <tt>program</tt>, <tt>object</tt> and <tt>function</tt>. 
They are all <b>pointers</b> which means that they point to something 
in memory. This "something" is freed when there are no more pointers to it. 
Assigning a variable with a value of a pointer type will not copy this 
"something" instead it will only generate a new reference to it. Special care 
sometimes has to be taken when giving one of these types as arguments to 
a function; the function can in fact modify the "something". If this effect 
is not wanted you have to explicitly copy the value. More about this will 
be explained later in this chapter.</p> 
 
<subsection title="array"> 
 
<p>Arrays are the simplest of the pointer types. An array is merely a block of 
memory with a fixed size containing a number of slots which can hold any 
type of value. These slots are called <b>elements</b> and are accessible 
through the index operator. To write a constant array you enclose the 
values you want in the array with <tt>({ })</tt> like this:</p> 
 
<example> 
({ })      // Empty array 
({ 1 })    // Array containing one element of type int 
({ "" })   // Array containing a string 
({ "", 1, 3.0 }) // Array of three elements, each of different type 
</example> 
 
<p>As you can see, each element in the array can contain any type of value. 
Indexing and ranges on arrays works just like on strings, except with 
arrays you can change values inside the array with the index operator. 
However, there is no way to change the size of the array, so if you want 
to append values to the end you still have to add it to another array 
which creates a new array. Figure 4.1 shows how the schematics of an array. 
As you can see, it is a very simple memory structure.</p> 
 
<!-- <image src=array.fig>fig 4.1 --> 
 
<p>Operators and functions usable with arrays:</p> 
 
<dl> 
<dt> indexing ( <tt><i>arr</i> [ <i>c</i> ]</tt> )</dt> 
<dd> Indexing an array retrieves or sets a given element in the array. 
     The index <i>c</i> has to be an integer. To set an index, simply put 
     the whole thing on the left side of an assignment, like this: 
     <tt><i>arr</i> [ <i>c</i> ] = <i>new_value</i></tt></dd> 
 
<dt> range ( <tt><i>arr</i> [ <i>from</i> .. <i>to</i> ]</tt> )</dt> 
<dd> The range copies the elements <i>from</i>, <i>from</i>+1, , <i>from</i>+2 ... <i>to</i> 
     into a new array. The new array will have the size <i>to</i>-<i>from</i>+1.</dd> 
 
<dt> comparing (<tt><i>a</i> == <i>b</i></tt> and <tt><i>a</i> != <i>b</i></tt>)</dt> 
<dd> The equal operator returns 1 if <i>a</i> and <i>b</i> are the <b>same</b> arrays. 
     It is not enough that they have the same size and same data. They must 
     be the same array. For example: <tt>({1}) == ({1})</tt> would return 0, while 
     <tt>array(int) a=({1}); return a==a;</tt> would return 1. Note that you cannot 
     use the operators <tt>&gt;</tt>, <tt>&gt;=</tt>, <tt>&lt;</tt> or <tt>&lt;=</tt> on arrays.</dd> 
 
<dt> Summation (<tt><i>a</i> + <i>b</i></tt>)</dt> 
<dd> As with strings, summation concatenates arrays. <tt>({1})+({2})</tt> returns <tt>({1,2})</tt>.</dd> 
 
<dt> Subtractions (<tt><i>a</i> - <i>b</i></tt>)</dt> 
<dd> Subtracting one array from another returns a copy of 
    <i>a</i> with all the elements that are also present in <i>b</i> removed. 
    So <tt>({1,3,8,3,2}) - ({3,1})</tt> returns <tt>({8,2})</tt>.</dd> 
 
<dt> Intersection (<tt><i>a</i> &amp; <i>b</i></tt>)</dt> 
<dd> Intersection returns an array with all values that are present in both 
     <i>a</i> and <i>b</i>. The order of the elements will be the same as 
     the the order of the elements in <i>a</i>. Example: 
     <tt>({1,3,7,9,11,12}) &amp; ({4,11,8,9,1})</tt> will return: 
     <tt>({1,9,11})</tt>.</dd> 
 
<dt> Union (<tt><i>a</i> | <i>b</i></tt>)</dt> 
<dd> Union works almost as summation, but it only adds elements not 
     already present in <i>a</i>. So, <tt>({1,2,3}) | ({1,3,5})</tt> will 
     return <tt>({1,2,3,5})</tt>.  
     Note: the order of the elements in <i>a</i> can be changed!</dd> 
 
<dt> Xor (<tt><i>a</i> ^ <i>b</i></tt>)</dt> 
<dd>  This is also called symmetric difference. It returns an array with all 
     elements present in <i>a</i> or <i>b</i> but the element must NOT 
     be present in both. Example: <tt>({1,3,5,6}) ^ ({4,5,6,7})</tt> will 
     return <tt>({1,3,4,7})</tt>.</dd> 
 
<dt> Division (<tt><i>a</i> / <i>b</i></tt>)</dt> 
<dd> This will split the array <i>a</i> into an array of arrays. If <i>b</i> is 
     another array, <i>a</i> will be split at each occurance of that array. 
     If <i>b</i> is an integer or float, <i>a</i> will be split between 
     every <i>b</i>th element. Examples: <tt>({1,2,3,4,5})/({2,3})</tt> will 
     return <tt>({ ({1}), ({4,5}) })</tt> and <tt>({1,2,3,4})/2</tt> will 
     return <tt>({ ({1,2}), ({3,4}) })</tt>.</dd> 
 
<dt> Modulo (<tt><i>a</i> % <i>b</i></tt>)</dt> 
<dd> This operation is valid only if <i>b</i> is an integer. It will return 
     the part of the array that was not included by dividing <i>a</i> by 
     <i>b</i>.</dd> 
 
<dt><tt>array <ref>aggregate</ref>(mixed ... <i>elems</i>)</tt></dt> 
<dd> This function does the same as the <tt>({ })</tt> operator; it creates an 
     array from all arguments given to it. In fact, writing <tt>({1,2,3})</tt> 
     is the same as writing <tt>aggregate(1,2,3)</tt>.</dd> 
 
<dt><tt>array <ref>allocate</ref>(int <i>size</i>)</tt></dt> 
<dd>This function allocates a new array of size <tt>size</tt>. All the elements 
    in the new array will be zeroes.</dd> 
 
<dt><tt>int <ref>arrayp</ref>(mixed <i>a</i>)</tt></dt> 
<dd>This function returns 1 if <i>a</i> is an array, 0 otherwise.</dd> 
 
<dt><tt>array <ref>column</ref>(array(mixed) <i>a</i>, mixed <i>ind</i>)</tt></dt> 
<dd>This function goes through the array <i>a</i> and indexes every element 
    in it on <i>ind</i> and builds an array of the results. So if you have 
    an array <i>a</i> in which each element is a also an array. This function 
    will take a cross section, by picking out element <i>ind</i> from each 
    of the arrays in <i>a</i>. Example: 
    <tt>column( ({ ({1,2,3}), ({4,5,6}), ({7,8,9}) }), 2)</tt> will return 
    <tt>({3,6,9})</tt>.</dd> 
 
<dt><tt>int <ref>equal</ref>(mixed <i>a</i>, mixed <i>b</i>)</tt></dt> 
<dd> This function returns 1 if if <i>a</i> and <i>b</i> look the same. They 
     do not have to be pointers to the same array, as long as they are the same 
     size and contain equal data.</dd> 
 
<dt><tt>array <ref>filter</ref>(array <i>a</i>, mixed <i>func</i>, mixed ... <i>args</i>)</tt></dt> 
<dd><tt>filter</tt> returns every element in <i>a</i> for which 
    <i>func</i> returns <b>true</b> when called with that element as 
    first argument, and <i>args</i> for the second, third, etc. 
    arguments. (Both <i>a</i> and <i>func</i> can be other things; see 
    the reference for <tt><ref>filter</ref></tt> for 
    details about that.)</dd> 
 
<dt><tt>array <ref>map</ref>(array <i>a</i>, mixed <i>func</i>, mixed ... <i>args</i>)</tt></dt> 
<dd>This function works similar to <ref>filter</ref> but returns the 
    results of the function <i>func</i> instead of returning the 
    elements from <i>a</i> for which <i>func</i> returns <b>true</b>. 
    (Like <ref>filter</ref>, this function accepts other things for 
    <i>a</i> and <i>func</i>; see the reference for <ref>map</ref>.)</dd> 
 
<dt><tt>array <ref>replace</ref>(array <i>a</i>, mixed <i>from</i>, mixed <i>to</i>)</tt></dt> 
<dd>This function will create a copy of <i>a</i> with all elements equal to 
    <i>from</i> replaced by <i>to</i>.</dd> 
 
<dt><tt>array <ref>reverse</ref>(array <i>a</i>)</tt></dt> 
<dd><tt>Reverse</tt> will create a copy of <i>a</i> with the last element first, 
    the last but one second, and so on.</dd> 
 
<dt><tt>array <ref>rows</ref>(array <i>a</i>, array <i>indexes</i>)</tt></dt> 
<dd>This function is similar to <ref>column</ref>. It indexes <i>a</i> with 
    each element from <i>indexes</i> and returns the results in an array. 
    For example: <tt>rows( ({"a","b","c"}), ({ 2,1,2,0}) ) </tt> will return 
    <tt>({"c","b","c","a"})</tt>.</dd> 
 
<dt><tt>int <ref>search</ref>(array <i>haystack</i>, mixed <i>needle</i>)</tt></dt> 
<dd>This function returns the index of the first occurrence of an element 
    equal (tested with <tt>==</tt>) to <i>needle</i> in the array 
    <i>haystack</i>.</dd> 
 
<dt><tt>int <ref>sizeof</ref>(mixed <i>arr</i>)</tt></dt> 
<dd>This function returns the number of elements in the array <i>arr</i>.</dd> 
 
<dt><tt>array <ref>sort</ref>(array <i>arr</i>, array ... <i>rest</i>)</tt></dt> 
<dd>This function sorts <i>arr</i> in smaller-to-larger order. Numbers, floats 
    and strings can be sorted. If there are any additional arguments, they 
    will be permutated in the same manner as <i>arr</i>. See 
    <!-- <ref to=functions> --> functions for more details.</dd> 
 
<dt><tt>array <ref>Array.uniq</ref>(array <i>a</i>)</tt></dt> 
<dd>This function returns a copy of the array <i>a</i> with all duplicate 
    elements removed. Note that this function can return the elements 
    in any order.</dd> 
</dl> 
</subsection> 
 
<subsection title="mapping"> 
 
<p>Mappings are are really just more generic arrays. However, they are slower 
and use more memory than arrays, so they cannot replace arrays completely. 
What makes mappings special is that they can be indexed on other things than 
integers. We can imagine that a mapping looks like this:</p> 
 
<!-- <image src=mapping.fig>fig 4.2 --> 
 
<p>Each index-value pair is floating around freely inside the mapping. There is 
exactly one value for each index. We also have a (magical) lookup function. 
This lookup function can find any index in the mapping very quickly. Now, if 
the mapping is called <i>m</i> and we index it like this: 
<tt><i>m</i> [ <i>i</i> ]</tt> the lookup function will quickly find the index 
<i>i</i> in the mapping and return the corresponding value. If the index is  
not found, zero is returned instead.  
If we on the other hand assign an index in the mapping the value will 
instead be overwritten with the new value. If the index is not found when 
assigning, a new index-value pair will be added to the mapping. 
Writing a constant mapping is easy:</p> 
 
<example> 
([ ])       // Empty mapping 
([ 1:2 ])   // Mapping with one index-value pair, the 1 is the index 
([ "one":1, "two":2 ]) // Mapping which maps words to numbers 
([ 1:({2.0}), "":([]), ]) // Mapping with lots of different types 
</example> 
 
<p>As with arrays, mappings can contain any type. The main difference is that 
the index can be any type too. Also note that the index-value pairs in a 
mapping are not stored in a specific order. You can not refer to the 
fourteenth key-index pair, since there is no way of telling which one is 
the fourteenth. Because of this, you cannot use the range operator on 
mappings.</p> 
 
<p>The following operators and functions are important:</p> 
 
<dl> 
<dt> indexing ( <tt><i>m</i> [ <i>ind</i> ]</tt> )</dt> 
<dd> As discussed above, indexing is used to retrieve, store and add values 
     to the mapping.</dd> 
<dt> addition, subtraction, union, intersection and xor</dt> 
<dd> All these operators works exactly as on arrays, with the difference that 
     they operate on the indices. In those cases when the value can come from 
     either mapping, it will be taken from the right side of the operator. 
     This makes it easier to add new values to a mapping with <tt>+=</tt>. 
     Some examples:<br /> 
     <tt>([1:3, 3:1]) + ([2:5, 3:7])</tt> returns <tt>([1:3, 2:5, 3:7 ])</tt><br /> 
     <tt>([1:3, 3:1]) - ([2:5, 3:7])</tt> returns <tt>([1:3])</tt><br /> 
     <tt>([1:3, 3:1]) | ([2:5, 3:7])</tt> returns <tt>([1:3, 2:5, 3:7 ])</tt><br /> 
     <tt>([1:3, 3:1]) &amp; ([2:5, 3:7])</tt> returns <tt>([3:7])</tt><br /> 
     <tt>([1:3, 3:1]) ^ ([2:5, 3:7])</tt> returns <tt>([1:3, 2:5])</tt><br /></dd> 
 
<dt> same ( <tt><i>a</i> == <i>b</i></tt> )</dt> 
<dd> Returns 1 if <i>a</i> is <b>the same</b> mapping as <i>b</i>, 0 otherwise.</dd> 
 
<dt> not same ( <tt><i>a</i> != <i>b</i></tt> )</dt> 
<dd> Returns 0 if <i>a</i> is <b>the same</b> mapping as <i>b</i>, 1 otherwise.</dd> 
 
<dt><tt>array <ref>indices</ref>(mapping <i>m</i>)</tt></dt> 
<dd><tt>Indices</tt> returns an array containing all the indices in the mapping <i>m</i>.</dd> 
 
<dt><tt>mixed <ref>m_delete</ref>(mapping <i>m</i>, mixed <i>ind</i>)</tt></dt> 
<dd>This function removes the index-value pair with the index <i>ind</i> from the mapping <i>m</i>. 
    It will return the value that was removed.</dd> 
 
<dt><tt>int <ref>mappingp</ref>(mixed <i>m</i>)</tt></dt> 
<dd>This function returns 1 if <i>m</i> is a mapping, 0 otherwise.</dd> 
 
<dt><tt>mapping <ref>mkmapping</ref>(array <i>ind</i>, array <i>val</i>)</tt></dt> 
<dd>This function constructs a mapping from the two arrays <i>ind</i> and 
    <i>val</i>. Element 0 in <i>ind</i> and element 0 in <i>val</i> becomes 
    one index-value pair. Element 1 in <i>ind</i> and element 1 in <i>val</i> 
    becomes another index-value pair, and so on..</dd> 
 
<dt><tt>mapping <ref>replace</ref>(mapping <i>m</i>, mixed <i>from</i>, mixed <i>to</i>)</tt></dt> 
<dd>This function creates a copy of the mapping <i>m</i> with all values equal to 
    <i>from</i> replaced by <i>to</i>.</dd> 
 
<dt><tt>mixed <ref>search</ref>(mapping <i>m</i>, mixed <i>val</i>)</tt></dt> 
<dd>This function returns the index of the 'first' index-value pair which has the value <i>val</i>.</dd> 
 
<dt><tt>int <ref>sizeof</ref>(mapping <i>m</i>)</tt></dt> 
<dd><tt>Sizeof</tt> returns how many index-value pairs there are in the mapping.</dd> 
 
<dt><tt>array <ref>values</ref>(mapping <i>m</i>)</tt></dt> 
<dd>This function does the same as <ref>indices</ref>, but returns an array with all the values instead. 
    If <ref>indices</ref> and <ref>values</ref> are called on the same mapping after each other, without 
    any other mapping operations in between, the returned arrays will be in the same order. They can 
    in turn be used as arguments to <ref>mkmapping</ref> to rebuild the mapping <i>m</i> again.</dd> 
 
<dt><tt>int <ref>zero_type</ref>(mixed t)</tt></dt> 
<dd>When indexing a mapping and the index is not found, zero is returned. However, problems can arise 
    if you have also stored zeroes in the mapping. This function allows you to see the difference between 
    the two cases. If <tt>zero_type(<i>m</i> [ <i>ind</i> ])</tt> returns 1, it means that the value was 
    not present in the mapping. If the value was present in the mapping, <ref>zero_type</ref> will return 
    something else than 1.</dd> 
</dl> 
</subsection> 
 
 
<subsection title="multiset"> 
 
<p>A multiset is almost the same thing as a mapping. The difference is that there 
are no values:</p> 
 
<!-- <image src=multiset.fig>fig 4.3 --> 
 
<p>Instead, the index operator will return 1 if the value was found 
in the multiset and 0 if it was not. When assigning an index to a multiset like 
this: <tt><i>mset</i>[ <i>ind</i> ] = <i>val</i></tt> the index <i>ind</i> 
will be added to the multiset <i>mset</i> if <i>val</i> is <b>true</b>. 
Otherwise <i>ind</i> will be removed from the multiset instead.</p> 
 
<p>Writing a constant multiset is similar to writing an array:</p> 
 
<example> 
(&lt; &gt;)      // Empty multiset 
(&lt; 17 &gt;)  // Multiset with one index: 17 
(&lt; "", 1, 3.0, 1 &gt;) // Multiset with four indices 
</example> 
 
<p>Note that you can actually have more than one of the same index in a multiset. This is 
normally not used, but can be practical at times.</p> 
</subsection> 
 
<subsection title="program"> 
 
<p>Normally, when we say <b>program</b> we mean something we can execute from 
a shell prompt. However, Pike has another meaning for the same word. In Pike 
a <tt>program</tt> is the same as a <b>class</b> in C++. A <tt>program</tt> 
holds a table of what functions and variables are defined in that program. 
It also holds the code itself, debug information and references to other 
programs in the form of inherits. A <tt>program</tt> does not hold space 
to store any data however. 
All the information in a <tt>program</tt> is 
gathered when a file or string is run through the Pike compiler. The variable 
space needed to execute the code in the program is stored in an <tt>object</tt> 
which is the next data type we will discuss.</p> 
 
<!-- <image src=program.fig>fig 4.4 --> 
 
<p>Writing a <tt>program</tt> is easy, in fact, every example we have tried so 
far has been a <tt>program</tt>. To load such a program into memory, we can 
use <tt>compile_file</tt> which takes a file name, compiles the file 
and returns the compiled program. It could look something like this:</p> 
 
<example> 
program p = compile_file("hello_world.pike"); 
</example> 
 
<p>You can also use the <b>cast</b> operator like this:</p> 
 
<example> 
program p = (program) "hello_world"; 
</example> 
 
<p>This will also load the program <tt>hello_world.pike</tt>, the only difference 
is that it will cache the result so that next time you do <tt>(program)"hello_world"</tt> 
you will receive the _same_ program. If you call <tt>compile_file("hello_world.pike")</tt> 
repeatedly you will get a new program each time.</p> 
 
<p>There is also a way to write programs inside programs with the help of the 
<tt>class</tt> keyword:</p> 
 
<example> 
class class_name { 
  inherits, variables and functions 
} 
</example> 
 
<p>The <tt>class</tt> keyword can be written as a separate entity 
outside of all functions, but it is also an expression which returns the 
<tt>program</tt> written between the brackets. The <i>class_name</i> is 
optional. If used you can later refer to that <tt>program</tt> by the name 
<i>class_name</i>. 
This is very similar to how classes are written in C++ and can be used 
in much the same way. It can also be used to create <b>structs</b> 
(or records if you program Pascal). 
Let's look at an example:</p> 
 
<example> 
class record { 
  string title; 
  string artist; 
  array(string) songs; 
} 
 
array(record) records = ({}); 
 
void add_empty_record() 
{ 
  records+=({ record() }); 
} 
 
void show_record(record rec) 
{ 
  write("Record name: "+rec-&gt;title+"\n"); 
  write("Artist: "+rec-&gt;artist+"\n"); 
  write("Songs:\n"); 
  foreach(rec-&gt;songs, string song) 
    write("   "+song+"\n"); 
} 
</example> 
 
<p>This could be a small part of a better record register program. It is not 
a complete executable program in itself.  In this example we create a 
<tt>program</tt> called <tt>record</tt> which has three identifiers. 
In <tt>add_empty_record</tt> a new object is created 
by calling <tt>record</tt>. This is called <b>cloning</b> and it 
allocates space to store the variables defined in the <tt>class record</tt>. 
<tt>Show_record</tt> takes one of the records created in 
<tt>add_empty_record</tt> and shows the contents of it. As you can see, the arrow operator 
is used to access the data allocated in <tt>add_empty_record</tt>. 
If you do not understand this section I suggest you go on and read the 
next section about <tt>objects</tt> and then come back and read this 
section again.</p> 
 
<dl> 
<dt> cloning</dt> 
<dd> To create a data area for a <tt>program</tt> you need to instantiate or 
     <b>clone</b> the program. This is accomplished by using a pointer 
     to the <tt>program</tt> as if it was a function and call it. That 
     creates a new object and calls the function <tt>create</tt> in the 
     new object with the arguments. 
 
<!-- 
     It is also possible to use the 
     functions <tt>new()</tt> and <tt>clone()</tt> which do exactly the 
     same thing except you can use a string to specify what program you 
     want to clone. 
--> 
</dd> 
 
<dt> compiling</dt> 
<dd> All programs are generated by compiling a string. The string may of 
     course be read from a file. For this purpose there are three functions: 
<expr> 
program <ref>compile</ref>(string p); 
program <ref>compile_file</ref>(string filename); 
program <ref>compile_string</ref>(string p, string filename); 
</expr> 
     <ref>compile_file</ref> simply reads the file given as argument, compiles 
     it and returns the resulting program. <ref>compile_string</ref> instead 
     compiles whatever is in the string <i>p</i>. The second argument, 
     <i>filename</i>, is only used in debug printouts when an error occurs 
     in the newly made program. Both <ref>compile_file</ref> and 
     <ref>compile_string</ref> call <ref>compile</ref> to actually compile 
     the string after having called <ref>cpp</ref> on it.</dd> 
 
<dt> casting</dt> 
<dd> Another way of compiling files to program is to use the <b>cast</b> 
     operator. Casting a string to the type <tt>program</tt> calls a function 
     in the master object which will compile the program in question for you. 
     The master also keeps the program in a cache, so if you later need the 
     same program again it will not be re-compiled.</dd> 
 
<dt> <tt>int <ref>programp</ref>(mixed <i>p</i>)</tt></dt> 
<dd> This function returns 1 if <i>p</i> is a program, 0 otherwise.</dd> 
 
<dt> comparisons</dt> 
<dd> As with all data types <tt>==</tt> and <tt>!=</tt> can be used to 
     see if two programs are the same or not.</dd> 
</dl> 
 
<p>The following operators and functions are important:</p> 
 
<dl> 
<dt> cloning ( <tt><i>p</i> ( <i>args</i> )</tt> )</dt> 
<dd> Creates an object from a program. Discussed in the next section.</dd> 
 
<dt> indexing ( <tt><i>p</i> [ <i>string</i> ]</tt>, or 
                <tt><i>p</i> -> <i>identifier</i></tt> )</dt> 
<dd> Retreives the value of the named constant from a program.</dd> 
 
<dt> <tt>array(string) <ref>indices</ref>(program <i>p</i>)</tt></dt> 
<dd> Returns an array with the names of all non-protected constants in the 
     program.</dd> 
 
<dt> <tt>array(mixed) <ref>values</ref>(program <i>p</i>)</tt></dt> 
<dd> Returns an array with the values of all non-protected constants in the 
     program.</dd> 
</dl> 
 
</subsection> 
 
 
<subsection title="object"> 
 
<p>Although programs are absolutely necessary for any application you might 
want to write, they are not enough. A <tt>program</tt> doesn't have anywhere 
to store data, it just merely outlines how to store data. To actually store 
the data you need an <tt>object</tt>. Objects are basically a chunk of memory 
with a reference to the program from which it was cloned. Many objects can 
be made from one program. The <tt>program</tt> outlines where in the object 
different variables are stored.</p> 
 
<!-- <image src=object.fig>fig 4.5 --> 
 
<p>Each object has its own set of variables, and when calling a function in that 
object, that function will operate on those variables. If we take a look at 
the short example in the section about programs, we see that it would be 
better to write it like this:</p> 
 
<example> 
class record { 
  string title; 
  string artist; 
  array(string) songs; 
 
  void show() 
  { 
    write("Record name: "+title+"\n"); 
    write("Artist: "+artist+"\n"); 
    write("Songs:\n"); 
    foreach(songs, string song) 
      write("   "+song+"\n"); 
  } 
} 
 
array(record) records = ({}); 
 
void add_empty_record() 
{ 
  records+=({ record() }); 
} 
 
void show_record(object rec) 
{ 
  rec-&gt;show(); 
} 
</example> 
 
<p>Here we can clearly see how the function <tt>show</tt> prints the 
contents of the variables in that object. In essence, instead of accessing 
the data in the object with the <tt>-&gt;</tt> operator, we call a function 
in the object and have it write the information itself. This type of 
programming is very flexible, since we can later change how <tt>record</tt> 
stores its data, but we do not have to change anything outside of 
the <tt>record</tt> program.</p> 
 
<p>Functions and operators relevant to objects:</p> 
 
<dl> 
<dt> indexing</dt> 
<dd> Objects can be indexed on strings to access identifiers. If the identifier 
     is a variable, the value can also be set using indexing. If the identifier 
     is a function, a pointer to that function will be returned. If the 
     identifier is a constant, the value of that constant will be returned. 
     Note that the <tt>-&gt;</tt> operator is actually the same as indexing. 
     This means that <tt>o-&gt;foo</tt> is the same as <tt>o["foo"]</tt></dd> 
 
<dt> cloning</dt> 
<dd> As discussed in the section about programs, cloning a program is done 
     by using a pointer to the program as a function and calling it. 
     Whenever you clone an object, all the global variables will be 
     initialized. After that the function <tt>create</tt> will be called 
     with any arguments you call the program with.</dd> 
 
<dt> <tt>void <ref>destruct</ref>(object <i>o</i>)</tt></dt> 
<dd> This function invalidates all references to the object <i>o</i> and 
     frees all variables in that object. This function is also called when 
     <i>o</i> runs out of references. If there is a function named 
     <tt>destroy</tt> in the object, it will be called before the actual 
     destruction of the object.</dd> 
 
<dt> <tt>array(string) <ref>indices</ref>(object <i>o</i>)</tt></dt> 
<dd> This function returns a list of all identifiers in the object <i>o</i>.</dd> 
 
<dt> <tt>program <ref>object_program</ref>(object <i>o</i>)</tt></dt> 
<dd> This function returns the program from which <i>o</i> was cloned.</dd> 
 
<dt> <tt>int <ref>objectp</ref>(mixed <i>o</i>)</tt></dt> 
<dd> This function returns 1 if <i>o</i> is an object, 0 otherwise. 
     Note that if <i>o</i> has been destructed, this function will return 0.</dd> 
 
<dt> <tt>object <ref>this_object</ref>()</tt></dt> 
<dd> This function returns the object in which the interpreter is currently 
     executing.</dd> 
 
<dt> <tt>array <ref>values</ref>(object <i>o</i>)</tt></dt> 
<dd> This function returns the same as <tt>rows(o,indices(o))</tt>. 
     That means it returns all the values of the identifiers in the 
     object <i>o</i>.</dd> 
 
<dt> comparing</dt> 
<dd> As with all data types <tt>==</tt> and <tt>!=</tt> can be used to 
     check if two objects are the same or not.</dd> 
</dl> 
</subsection> 
 
<subsection title="function"> 
 
<p>When indexing an object on a string, and that string is the name of a function 
in the object a <tt>function</tt> is returned. Despite its name, a 
<tt>function</tt> is really a <b>function pointer</b>.</p> 
 
<!-- <image src=function.fig>fig 4.6 --> 
 
<p>When the function pointer is called, the interpreter sets 
<ref>this_object()</ref> to the object in which the function is located and 
proceeds to execute the function it points to. Also note that function pointers 
can be passed around just like any other data type:</p> 
 
<example> 
int foo() { return 1; } 
function bar() { return foo; } 
int gazonk() { return foo(); } 
int teleledningsanka() { return bar()(); } 
</example> 
 
<p>In this example, the function bar returns a pointer to the function 
<tt>foo</tt>. No indexing is necessary since the function <tt>foo</tt> is 
located in the same object. The function <tt>gazonk</tt> simply calls 
<tt>foo</tt>. However, note that the word <tt>foo</tt> in that function 
is an expression returning a function pointer that is then called. To 
further illustrate this, <tt>foo</tt> has been replaced by <tt>bar()</tt> 
in the function <tt>teleledningsanka</tt>.</p> 
 
<p>For convenience, there is also a simple way to write a function inside another 
function. To do this you use the <tt>lambda</tt> keyword.  The 
syntax is the same as for a normal function, except you write 
<tt>lambda</tt> instead of the function name:</p> 
 
<example> 
lambda ( types ) { statements } 
</example> 
 
<p>The major difference is that this is an expression that can be used inside 
an other function. Example:</p> 
 
<example> 
function bar() { return lambda() { return 1; }; ) 
</example> 
 
<p>This is the same as the first two lines in the previous example, the keyword 
<tt>lambda</tt> allows you to write the function inside <tt>bar</tt>.</p> 
 
<p>Note that unlike C++ and Java you can not use function overloading in Pike. 
This means that you cannot have one function called 'foo' which takes an 
integer argument and another function 'foo' which takes a float argument.</p> 
 
<p>This is what you can do with a function pointer.</p> 
 
<dl> 
<dt> calling ( <i>f</i> ( mixed ... <i>args</i> ) )</dt> 
<dd> As mentioned earlier, all function pointers can be called. In this example 
     the function <i>f</i> is called with the arguments <i>args</i>.</dd> 
 
<dt> <tt>string <ref>function_name</ref>(function <i>f</i>)</tt></dt> 
<dd> This function returns the name of the function <i>f</i> is pointing at.</dd> 
 
<dt> <tt>object <ref>function_object</ref>(function <i>f</i>)</tt></dt> 
<dd> This function returns the object the function <i>f</i> is located in.</dd> 
 
<dt> <tt>int <ref>functionp</ref>(mixed <i>f</i>)</tt></dt> 
<dd> This function returns 1 if <i>f</i> is a <tt>function</tt>, 0 otherwise. 
     If <i>f</i> is located in a destructed object, 0 is returned.</dd> 
 
<dt> <tt>function <ref>this_function</ref>()</tt></dt> 
<dd> This function returns a pointer to the function it is called from. 
     This is normally only used with <b>lambda</b> functions because they 
     do not have a name.</dd> 
</dl> 
</subsection> 
</section> 
 
<section title="Sharing data"> 
 
<p>As mentioned in the beginning of this chapter, the assignment operator 
(<tt>=</tt>) does not copy anything when you use it on a pointer type. 
Instead it just creates another reference to the memory object. 
In most situations this does not present a problem, and it speeds up 
Pike's performance. However, you must be aware of this when programming. 
This can be illustrated with an example:</p> 
 
<example> 
int main(int argc, array(string) argv) 
{ 
  array(string) tmp; 
  tmp=argv; 
  argv[0]="Hello world.\n"; 
  write(tmp[0]); 
} 
</example> 
 
<p>This program will of course write <tt>Hello world.</tt></p> 
 
<p>Sometimes you want to create a copy of a mapping, array or object. To 
do so you simply call <ref>copy_value</ref> with whatever you want to copy 
as argument. Copy_value is recursive, which means that if you have an 
array containing arrays, copies will be made of all those arrays.</p> 
 
<p>If you don't want to copy recursively, or you know you don't have to 
copy recursively, you can use the plus operator instead. For instance, 
to create a copy of an array you simply add an empty array to it, like this: 
<tt>copy_of_arr = arr + ({});</tt> If you need to copy a mapping you use 
an empty mapping, and for a multiset you use an empty multiset.</p> 
</section> 
 
 
<section title="Variables"> 
 
<p>When declaring a variable, you also have to specify what type of variable 
it is. For most types, such as <tt>int</tt> and <tt>string</tt> this is 
very easy. But there are much more interesting ways to declare variables 
than that, let's look at a few examples:</p> 
 
<example> 
int x; // x is an integer 
int|string x; // x is a string or an integer 
array(string) x; // x is an array of strings 
array x; // x is an array of mixed 
mixed x; // x can be any type 
string *x; // x is an array of strings 
 
// x is a mapping from int to string 
mapping(string:int) x; 
 
// x implements Stdio.File 
Stdio.File x; 
 
// x implements Stdio.File 
object(Stdio.File) x; 
 
// x is a function that takes two integer 
// arguments and returns a string 
function(int,int:string) x; 
 
// x is a function taking any amount of 
// integer arguments and returns nothing. 
function(int...:void) x; 
 
// x is ... complicated 
mapping(string:function(string|int...:mapping(string:array(string)))) x; 
</example> 
 
<p>As you can see there are some interesting ways to specify types. 
Here is a list of what is possible:</p> 
 
<dl> 
<dt> <tt>mixed</tt></dt> 
<dd> This means that the variable can contain any type, or the 
     function return any value.</dd> 
 
<dt> <tt>array( <i>type</i> )</tt></dt> 
<dd> This means an array of elements with the type <i>type</i>.</dd> 
 
<dt> <tt>mapping( <i>key type</i> : <i>value type</i> )</tt></dt> 
<dd> This is a mapping where the keys are of type <i>key type</i> and the 
      values of <i>value type</i>.</dd> 
 
<dt> <tt>multiset ( <i>type</i> )</tt></dt> 
<dd> This means a multiset containing values of the type <i>type</i>.</dd> 
 
<dt> <tt>object ( <i>program</i> )</tt></dt> 
<dd> This means an object which 'implements'  the specified program. The 
     <i>program</i> can be a class, a constant, or a string. 
     If the program is a string it will be casted to a program first. 
     See the documentation for <tt>inherit</tt> for more information 
     about this casting. The compiler will assume that any function 
     or variable accessed in this object has the same type information 
     as that function or variable has in <i>program</i>.</dd> 
 
<dt> <tt><i>program</i></tt></dt> 
<dd> This too means 'an object which implements <i>program</i>'. 
     <i>program</i> can be a class or a constant.</dd> 
 
<dt> <tt>function( <i>argument types</i> : <i>return type</i> )</tt></dt> 
<dd> This is a function taking the specified arguments and returning 
     <i>return type</i>. The <i>argument types</i> is a comma separated 
     list of types that specify the arguments. The argument list can also 
     end with <tt>...</tt> to signify that there can be any amount of the 
     last type.</dd> 
 
<dt> <tt><i>type1</i> | <i>type2</i></tt></dt> 
<dd> This means either <i>type1</i> or <i>type2</i></dd> 
 
<dt> <tt>void</tt></dt> 
<dd> Void can only be used in certain places, if used as return type for a 
     function it means that the function does not return a value. If used 
     in the argument list for a function it means that that argument can 
     be omitted. Example: <tt>function(int|void:void)</tt> this means a 
     function that may or may not take an integer argument and does not 
     return a value.</dd> 
</dl> 
 
</section> 
 
</chapter>