1
  
2
  
3
  
4
  
5
  
6
  
7
  
8
  
9
  
10
  
11
  
12
  
13
  
14
  
15
  
16
  
17
  
18
  
19
  
20
  
21
  
22
  
23
  
24
  
25
  
26
  
27
  
28
  
29
  
30
  
31
  
32
  
33
  
34
  
35
  
36
  
37
  
38
  
39
  
40
  
41
  
42
  
43
  
44
  
45
  
46
  
47
  
48
  
49
  
50
  
51
  
52
  
53
  
54
  
55
  
56
  
57
  
58
  
59
  
60
  
61
  
62
  
63
  
64
  
65
  
66
  
67
  
68
  
69
  
70
  
71
  
72
  
73
  
74
  
75
  
76
  
77
  
78
  
79
  
80
  
81
  
82
  
83
  
84
  
85
  
86
  
87
  
88
  
89
  
90
  
91
  
92
  
93
  
94
  
95
  
96
  
97
  
98
  
99
  
100
  
101
  
102
  
103
  
104
  
105
  
106
  
107
  
108
  
109
  
110
  
111
  
112
  
113
  
114
  
115
  
116
  
117
  
118
  
119
  
120
  
121
  
122
  
123
  
124
  
125
  
126
  
127
  
128
  
129
  
130
  
131
  
132
  
133
  
134
  
135
  
136
  
137
  
138
  
139
  
140
  
141
  
142
  
143
  
144
  
145
  
146
  
147
  
148
  
149
  
150
  
151
  
152
  
153
  
154
  
155
  
156
  
157
  
158
  
159
  
160
  
161
  
162
  
163
  
164
  
165
  
166
  
167
  
168
  
169
  
170
  
171
  
172
  
173
  
174
  
175
  
176
  
177
  
178
  
179
  
180
  
181
  
182
  
183
  
184
  
185
  
186
  
187
  
188
  
189
  
190
  
191
  
192
  
193
  
194
  
195
  
196
  
197
  
198
  
/* 
|| This file is part of Pike. For copyright information see COPYRIGHT. 
|| Pike is distributed under GPL, LGPL and MPL. See the file COPYING 
|| for more information. 
*/ 
 
#include "global.h" 
#include "stuff.h" 
#include "bitvector.h" 
#include "pike_cpulib.h" 
#include "pike_memory.h" 
 
/* Used by is8bitalnum in pike_macros.h. */ 
PMOD_EXPORT const char Pike_is8bitalnum_vector[] = 
  "0000000000000000" 
  "0000000000000000" 
  "0000000000000000" 
  "1111111111000000" 
  "0111111111111111" 
  "1111111111100001" 
  "0111111111111111" 
  "1111111111100000" 
  "0000000000000000" 
  "0000000000000000" 
  "1011110101100010" 
  "1011011001101110" 
  "1111111111111111" 
  "1111111011111111" 
  "1111111111111111" 
  "1111111011111111"; 
 
/* Not all of these are primes, but they should be adequate */ 
const INT32 hashprimes[32] = 
{ 
  31,        /* ~ 2^0  = 1 */ 
  31,        /* ~ 2^1  = 2 */ 
  31,        /* ~ 2^2  = 4 */ 
  31,        /* ~ 2^3  = 8 */ 
  31,        /* ~ 2^4  = 16 */ 
  31,        /* ~ 2^5  = 32 */ 
  61,        /* ~ 2^6  = 64 */ 
  127,       /* ~ 2^7  = 128 */ 
  251,       /* ~ 2^8  = 256 */ 
  541,       /* ~ 2^9  = 512 */ 
  1151,      /* ~ 2^10 = 1024 */ 
  2111,      /* ~ 2^11 = 2048 */ 
  4327,      /* ~ 2^12 = 4096 */ 
  8803,      /* ~ 2^13 = 8192 */ 
  17903,     /* ~ 2^14 = 16384 */ 
  32321,     /* ~ 2^15 = 32768 */ 
  65599,     /* ~ 2^16 = 65536 */ 
  133153,    /* ~ 2^17 = 131072 */ 
  270001,    /* ~ 2^18 = 264144 */ 
  547453,    /* ~ 2^19 = 524288 */ 
  1109891,   /* ~ 2^20 = 1048576 */ 
  2000143,   /* ~ 2^21 = 2097152 */ 
  4561877,   /* ~ 2^22 = 4194304 */ 
  9248339,   /* ~ 2^23 = 8388608 */ 
  16777215,  /* ~ 2^24 = 16777216 */ 
  33554431,  /* ~ 2^25 = 33554432 */ 
  67108863,  /* ~ 2^26 = 67108864 */ 
  134217727, /* ~ 2^27 = 134217728 */ 
  268435455, /* ~ 2^28 = 268435456 */ 
  536870911, /* ~ 2^29 = 536870912 */ 
  1073741823,/* ~ 2^30 = 1073741824 */ 
  2147483647,/* ~ 2^31 = 2147483648 */ 
}; 
 
/* Same thing as (int)floor(log((double)x) / log(2.0)), except a bit 
   quicker. Number of log2 per second: 
 
   log(x)/log(2.0)             50,000,000 
   log2(x)                     75,000,000 
   Table lookup             3,000,000,000 
   Intrinsic       30,000,000,000,000,000 
*/ 
 
PMOD_EXPORT int my_log2(size_t x) 
{ 
    if( x == 0 ) return 0; 
    return log2_u32(x); 
} 
 
 
PMOD_EXPORT double my_strtod(char *nptr, char **endptr) 
{ 
  double tmp=strtod(nptr,endptr); 
  if(*endptr>nptr) 
  { 
    if(endptr[0][-1]=='.') 
      endptr[0]--; 
  } 
  return tmp; 
} 
 
/* 
 * This rounds an integer up to the next power of two. For x a power 
 * of two, this will just return the same again. 
 */ 
unsigned INT32 find_next_power(unsigned INT32 x) 
{ 
    if( x == 0 ) return 1; 
    return 1<<(my_log2(x-1)+1); 
} 
 
#if HAS___BUILTIN_IA32_RDRAND32_STEP 
static int use_rdrnd; 
#endif 
 
/* Bob Jenkins small noncryptographic PRNG */ 
 
typedef unsigned long int  u4; 
static u4 rnd_a; 
static u4 rnd_b; 
static u4 rnd_c; 
static u4 rnd_d; 
 
#define rot(x,k) (((x)<<(k))|((x)>>(32-(k)))) 
static u4 ranval(void) { 
  u4 e = rnd_a - rot(rnd_b, 27); 
  rnd_a = rnd_b ^ rot(rnd_c, 17); 
  rnd_b = rnd_c + rnd_d; 
  rnd_c = rnd_d + e; 
  rnd_d = e + rnd_a; 
  return rnd_d; 
} 
 
static void raninit( u4 seed ) { 
  u4 i; 
  rnd_a = 0xf1ea5eed, rnd_b = rnd_c = rnd_d = seed; 
  for (i=0; i<20; ++i) { 
    (void)ranval(); 
  } 
} 
 
PMOD_EXPORT void my_srand(INT32 seed) 
{ 
#if HAS___BUILTIN_IA32_RDRAND32_STEP 
  unsigned int ignore, cpuid_ecx; 
 
  /* NOTE: some versions of valgrind falsely advertise 
   * RDRAND support in cpuid. 
   */ 
# if defined(USE_VALGRIND) 
  if (!PIKE_MEM_CHECKER()) 
# endif 
  if( !use_rdrnd ) 
  { 
    INT32 cpuid[4]; 
    x86_get_cpuid (1, cpuid); 
    if( cpuid[3] & bit_RDRND_2 ) 
      use_rdrnd = 1; 
  } 
  /* We still do the initialization here, since rdrnd might stop 
     working if the hardware random unit in the CPU fails (according 
     to intel documentation). 
 
 
     This is likely to be rather rare. But the cost is not exactly 
     high. 
 
     Source: 
 
     http://software.intel.com/en-us/articles/intel-digital-random-number-generator-drng-software-implementation-guide 
  */ 
#endif 
 
  raninit(seed); 
} 
 
static unsigned INT32 low_rand(void) 
{ 
#if HAS___BUILTIN_IA32_RDRAND32_STEP 
  if( use_rdrnd ) 
  { 
    unsigned int rnd; 
    unsigned int cnt = 0; 
    do{ 
      if( __builtin_ia32_rdrand32_step( &rnd ) ) 
        return rnd; 
    } while(cnt++ < 100); 
 
    /* hardware random unit most likely not healthy. 
       Switch to software random. */ 
    use_rdrnd = 0; 
  } 
#endif 
  return ranval(); 
} 
 
PMOD_EXPORT unsigned INT32 my_rand(unsigned INT32 limit) 
{ 
  if(limit==0xffffffff) 
    return low_rand(); 
  return low_rand()%limit; 
}